Com-ip.ru

КОМ IP
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент надежности автоматического выключателя по пуэ

Выбор выключателей ABB

В качестве защиты на переменном токе выбраны автоматические выключатели серии Isomax S для распределения электроэнергии. Isomax S могут быть оснащены электронными расцепителями Sace PR211/P или Sace PR212/P созданными на основе микропроцессорной технологии. Автоматические выключатели предназначены для защиты сетей и потребителей при КЗ и перегрузках по току. Конструктивно автоматический

выключатель состоит из силовых контактов с дугогасительной камерой и механизма отключения, который называют расцепителем. Расцепитель характеризуется время-токовой характеристикой (защитной характеристикой). На рис.3 приведена характеристика расцепителя с ограниченно-зависимой от тока выдержкой времени.

Рис. 3

Выключатель выбирается исходя из следующих условий:

1. Соответствие номинального напряжения автоматического выключателя UHB номинальному напряжению сети UCH. UHB ≥ UCH

2. Несрабатывания расцепителя выключателя (IНР) при максимальном рабочем токе Iраб МАКС. IНР ≥ Iраб МАКС

3. Предельно-отключаемый ток выключателя (IПО) должен быть больше максимального тока КЗ (IКМАКС) в момент отключения IПО ≥ IКМАКС

Выбор уставок автоматического выключателя для различных потребителей

производится с учетом требований Правил устройства электроустановок (ПУЭ), а также время-токовой характеристики выключателя.

Выбор автоматических выключателей. Таблица 4.1:

Место установки выключателяТип выключателяУсловия выбораРасчетные данные сетиКаталожные данные выключателя
QF1Sace IsomaxS7 Sace PR212PUcн ≤ Uнв Iраб.макс ≤ Iнр Iк.макс ≤ Iпо0.4 кВ 1102,9 А 12,5 кА0,69 кВ 1600 А 50 кА
QF2Sace IsomaxS5 Sace PR212PUcн ≤ Uнв Iраб.макс ≤ Iнр Iк.макс ≤ Iпо0.4 кВ 541,9 А 8,5 кА0,69 кВ 800 А 35 кА
QF3Sace IsomaxS1 Sace PR212PUcн ≤ Uнв Iраб.макс ≤ Iнр Iк.макс ≤ Iпо0.4 кВ 81,28 А 12,74 кА0,69 кВ 200 А 16 кА
QF4Sace IsomaxS1 Sace PR212PUcн ≤ Uнв Iраб.макс ≤ Iнр Iк.макс ≤ Iпо0.4 кВ 72,25 А 1,3 кА0,69 кВ 100 А 16 кА
QF5Sace IsomaxS8 Sace PR212PUcн ≤ Uнв Iраб.макс ≤ Iнр Iк.макс ≤ Iпо0,4 кВ 1116.33 А 17,9 кА0,69 кВ 2500 А 85 кА
QF6 (перед трансформатором)SepamUcн ≤ Uнв Iраб.макс ≤ Iнр Iк.макс ≤ Iпо10 кВ 57,5 А 2,1 кА10 кВ 1600 А 50 кА

Выбор уставок автоматических выключателей:

Ток срабатывания отсечки выбирается по выражению:

где — коэффициент надежности, принимается равным 1,2 [6]; — коэффициент самозапуска, принимается равным 1 (не учитывается ввиду отсутствия в нагрузке двигателей). Результаты расчета сведены в таблицу 4.2:

QF1QF2QF3QF4QF5
1323,5650,386,71339,6

Расцепители SACE PR211/P и SACE PR212/Р обеспечивают защиту от перегрузки, короткого замыкания и замыкания на землю. Широкий диапазон регулировки позволяет использовать данные расцепители во всех случаях, где требуется надежность и точность срабатывания. Данные расцепители позволяют использовать сигнальный модуль PR212/D и приводной модуль PR212/T при необходимости обеспечения дистанционного контроля и централизованного управления нагрузкой.

Зануление в электроустановках

Принцип действия зануления основан на возникновении короткого замыкания при пробое фазы на нетоковедущую часть часть прибора или устройства, что приводит к срабатыванию системы защиты (автоматического выключателя или перегоранию плавких предохранителей).

Зануление — основная мера защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью. Поскольку нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления.

Нулевым защитным проводником называется проводник, соединяющий зануляемые части (корпуса, конструкции, кожухи и т.п.) с заземленной нейтралью источника питания (трансформатора, генератора).

В сетях 380/220 В в соответствии с требованиями ПУЭ применяется заземление нейтралей (нулевых точек) трансформаторов или генераторов.

Рассмотрим вначале сеть 380 В с заземленной нейтралью. Такая сеть изображена на рис. 1.

Если человек прикоснется к проводнику этой сети, то под воздействием фазного напряжения образуется цепь поражения, которая замыкается через тело человека, обувь, пол, землю, заземление нейтрали (см. стрелки). Та же цепь образуется, если человек прикоснется к корпусу с поврежденной изоляцией. Однако просто выполнить заземление корпуса электроприемника нельзя.

Рис. 1. Прикосновение к проводнику в сети с заземленной нейтралью

Рис. 2. Заземление электроприемника в сети с заземленной нейтралью

Чтобы это понять, допустим, что такое заземление все же выполнено (рис. 2) и на установке произошло замыкание на корпус двигателя. Ток замыкания будет протекать через два заземлителя — электроприемника Rз и нейтрали Rо (см. стрелки).

По закону Ома фазное напряжение сети Uф распределится между заземлителями Rз и Ro пропорционально их величинам, т. е. чем больше сопротивление заземлителя, тем больше будет падение напряжения в нем.

Если, например, сопротивление Rо = 1 ом, Rз = 4 ом и U ф = 220 В, то падение напряжения распределится так: на сопротивлении Rз будем иметь 176 В, а на сопротивлении Rо будем иметь = 44 В.

Таким образом, между корпусом электродвигателя и землей возникает достаточно опасное напряжение. Человек, прикоснувшийся к корпусу, может быть поражен электрическим током. Если будет иметь место обратное соотношение сопротивлений, т. е. Rо будет больше, чем Rз, опасное напряжение может возникнуть между землей и корпусами оборудования, установленного возле трансформатора и имеющими общее заземление с его нейтралью.

Рис. 3 . Зануление электроприемника в сети с заземленной нейтралью

По указанной причине в установках с заземленной нейтралью напряжением 380/220 В применяется система заземления иного вида: все металлические корпуса и конструкции связываются электрически с заземленной нейтралью трансформатора через нулевой провод сети или специальный зануляющий проводник (рис. 3). Благодаря этому любое замыкание на корпус превращается в короткое замыкание, и аварийный участок отключается предохранителем или автоматическим выключателем. Такая система заземления и называется занулением .

Таким образом, обеспечение безопасности при занулении достигается путем отключения участка сети, в котором произошло замыкание на корпус.

Защитное действие зануления заключается в автоматическом отключении участка цепи с поврежденной изоляцией и одновременно — в снижении потенциала корпуса на время от момента замыкания до момента отключения. После прикосновения человека к корпусу не отключившегося, по какой-либо причине, электроприемника в схеме появится ветвь тока через тело человека.

Кроме того, если в этой линии установлено УЗО, то оно так же срабатывает, но не от большой величины силы тока, а потому, что сила тока в фазном проводе становится неравна силе тока в нулевом рабочем проводе, так как большая часть тока имеет место в цепи защитного зануления мимо УЗО. Если на этой линии установлены и УЗО и автоматический выключатель, то сработают либо они оба, либо что-то одно, в зависимости от их быстродействия и величины тока замыкания.

Читать еще:  Где находится выключатель стояночного тормоза

Так же как не всякое заземление обеспечивает безопасность, не всякое зануление пригодно для обеспечения безопасности. Зануление должно быть выполнено так, чтобы ток короткого замыкания в аварийном участке достигал значения, достаточного для расплавления плавкой вставки ближайшего предохранителя или отключения автомата. Для этого сопротивление цепи короткого замыкания должно быть достаточно малым.

Если отключения не произойдет, то ток замыкания будет длительно протекать по цепи и по отношению к земле возникнет напряжение не только на поврежденном корпусе, но и на всех зануленных корпусах (так как они электрически связаны). Это напряжение равно по величине произведению тока замыкания на сопротивление нулевого провода сети или зануляющего проводника и может оказаться значительным по величине и, следовательно, опасным особенно в местах где отсутствует выравнивание потенциалов. Чтобы предупредить подобную опасность, необходимо точно выполнять требования ПУЭ к устройству зануления .

Защитное действие зануления обеспечивается надежным срабатыванием максимальной токовой защиты на быстрое отключение участка сети с поврежденной изоляцией. По ПУЭ время автоматического отключения поврежденной линии для сети 220/380В не должно превышать 0,4 с.

Для этого необходимо, чтобы ток короткого замыкания в цепи фаза — нуль отвечал условию I к > k Iно м , где k — коэффициент надежности , Iном — номинальный ток уставки отключающего аппарата (плавкий предохранитель, автомат ический выключатель ).

Коэффициент надежности k согласно ПУЭ должен быть не менее: 3 — для плавких предохранителей или автоматов с тепловым расцепителем (тепловое реле) для нормальных помещений и 4 — 6 — для взрывоопасных помещений , 1,4 — для автомат ических выключателей с электромагнитным расцепителем во всех помещениях.

Сопротивление растеканию заземляющего устройства нейтрали Ro (рабочее заземление) должно быть не более 2, 4 и 8 Ом соответственно при номинальных напряжениях 660, 380 и 220 В электроустановки трехфазного тока.

Выбор аппаратов защиты

Выбор аппаратов защиты

Вопрос. Какие аппараты применяются в качестве защитных?

Ответ. Применяются автоматические выключатели или предохранители. Рекомендуется применять автоматические выключатели с комбинированным расцепителем.

Для обеспечения требований быстродействия, чувствительности, селективности в необходимых случаях могут применяться устройства защиты с использованием выносных реле (реле косвенного действия). Коэффициент чувствительности этих защит в конце защищаемой зоны должен быть не менее 1,5 (3.1.3).

Вопрос. Как выбираются аппараты защиты по отключающей способности?

Ответ. Выбираются соответственно максимальному значению тока КЗ в начале защищаемого участка электрической сети, то есть стойкими при этом токе в соответствии с определением гл. 1.4 Правил.

Установка аппаратов защиты, не стойких при максимальных значениях токов КЗ, допускается, если защищающий их групповой автоматический выключатель или ближайший автоматический выключатель по направлению к источнику питания является стойким при максимальном токе КЗ, и ток срабатывания его мгновенно действующего расцепителя (отсечки без выдержки времени) меньше, чем ток одноразовой предельной коммутационной способности каждого из группы защищаемых аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса (3.1.4).

Вопрос. Каковы общие требования по выбору номинальных токов плавких вставок предохранителей и номинальных токов или уставок расцепителей автоматических выключателей, служащих для защиты отдельных участков сети?

Ответ. Во всех случаях выбираются по возможности наименьшими по расчетным токам этих участков, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковых токах, пиках технологических нагрузок, токах при самозапуске и т. п.) (3.1.6).

Вопрос. Как присоединяются к сети предохранители и автоматические выключатели пробочного типа?

Ответ. Присоединяются так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза оставалась без напряжения.

Питающий проводник присоединяется, как правило, к неподвижным контактам автоматического выключателя.

При необходимости присоединения питающего проводника к подвижным контактам автоматического выключателя (например, в схемах с секционным выключателем) следует иметь в виду, что в этом случае предельная коммутационная способность некоторых типов автоматических выключателей уменьшается (3.1.7).

Вопрос. Какая надпись наносится на каждый аппарат защиты?

Ответ. Наносится надпись, указывающая номинальный ток аппарата, уставку расцепителя, значение номинального тока плавкой вставки. Рекомендуется на дверцах шкафов или щитков, в которых устанавливаются аппараты защиты, размещать схемы с указанием необходимых для защиты присоединений уставок расцепителей автоматических выключателей и номинальных токов плавких вставок предохранителей (3.1.7).

Вопрос. При каких условиях предусматривается защита от токов КЗ?

Ответ. Предусматривается, если наименьший расчетный ток в конце защищаемой линии превышает:

в 3 раза номинальный ток плавкой вставки предохранителя;

в 3 раза номинальный ток нерегулируемого расцепителя автоматического выключателя с обратно зависимой от тока характеристикой;

в 3 раза уставку срабатывания по току регулируемого расцепителя автоматического выключателя с обратно зависимой от тока характеристикой;

в 1,1 раза верхнее значение тока срабатывания автоматического выключателя, имеющего только мгновенно действующий или селективный максимальный расцепитель тока (отсечку).

При определении наименьшего значения тока КЗ учитываются активные и индуктивные сопротивления цепи КЗ, включая активное сопротивление электрической дуги, а также увеличение активного сопротивления проводника в результате нагрева.

Защита от токов КЗ по возможности выбирается с наименьшим временем отключения и селективностью действия.

Для кабельных сетей СН электростанций токовая отсечка принимается с наименьшим коэффициентом чувствительности около 1,3 при междуфазных и однофазных КЗ в конце защищаемого кабеля. При этом в случае необходимости для защиты от однофазных КЗ в конце кабеля должна выполняться отдельная защита, не требующая отстройки от пусковых токов присоединения, с коэффициентом чувствительности не менее 1,5. Допускается не охватывать отсечкой всю длину защищаемой КЛ, если при работе расцепителя с обратно зависимой от тока характеристикой обеспечивается термическая стойкость кабеля и селективность.

Для кабельных сетей СН электростанций рекомендуется обеспечивать резервирование защит смежных участков (3.1.8).

Вопрос. Какие аппараты применяются для защиты электроустановок постоянного тока?

Ответ. Применяются автоматические выключатели с комбинированным расцепителем или специальная выносная РЗ. Допускается применение предохранителей (3.1.8).

Вопрос. Какие условия выполняются для обеспечения селективности отключения поврежденного участка?

Ответ. Выполняются следующие условия:

при применении автоматических выключателей все КЗ в основной зоне защиты отключаются токовой отсечкой с коэффициентом чувствительности не менее 1,5;

КЗ в зоне резервирования отключаются с коэффициентом чувствительности не менее 1,3. Допускается осуществлять резервирование с использованием расцепителя с обратно зависимой от тока характеристикой при условии обеспечения термической стойкости кабеля;

Читать еще:  Как подключить 2х клавишный выключатель legrand

при применении выносной РЗ коэффициенты чувствительности: для основной зоны – не менее 1,5; для зоны резервирования – не менее 1,2;

при применении предохранителей коэффициенты чувствительности: для основной зоны – не менее 5; для зоны резервирования – не менее 3 (3.1.9).

Вопрос. Какие присоединения обеспечиваются защитой от перегрузки?

Ответ. Обеспечиваются присоединения, выполненные с использованием СИП (ВЛИ), а также следующие сети внутри помещений:

линии, выполненные открыто проложенными проводниками с горючей наружной оболочкой или с горючей наружной изоляцией;

групповые сети в жилых зданиях, общественных зданиях и сооружениях, в служебно-бытовых помещениях промышленных предприятий, а также в пожароопасных зонах;

присоединения в жилых зданиях, в общественных зданиях и сооружениях, на промышленных предприятиях – только в случаях, когда по режиму работы может возникать длительная перегрузка проводников (3.1.10).

Вопрос. Какой принимается кратность токов аппаратов защиты к длительно допустимым токовым нагрузкам защищаемых проводников в сетях постоянного тока, защищаемых от перегрузки?

Ответ. Принимается не более:

0,8 – для номинального тока плавкой вставки;

1,0 – для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависимой от тока характеристикой (независимо от наличия отсечки);

1,25 – для тока срабатывания автоматического выключателя с регулируемой обратно зависимой от тока характеристикой (независимо от наличия отсечки) (3.1.11).

Вопрос. В каких случаях защита не устанавливается?

Ответ. На двухцепных ВЛ в нулевом проводе расцепитель автоматического выключателя или выносная токовая защита не устанавливается (3.1.12).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Глава 1.3. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ

Глава 1.3. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ Область применения, общие требования Вопрос. На какие электрические аппараты и проводники распространяется настоящая глава Правил?Ответ. Распространяется на методы выбора электрических аппаратов и проводников

Выбор электрических аппаратов по условиям продолжительности режимов и сечений проводников по нагреву в этих режимах

Выбор электрических аппаратов по условиям продолжительности режимов и сечений проводников по нагреву в этих режимах Вопрос. По каким параметрам выбираются все электрические аппараты?Ответ. Выбираются по номинальному напряжению и номинальному току. При этом

Проверка электрических аппаратов на коммутационную способность при коротких замыканиях

Проверка электрических аппаратов на коммутационную способность при коротких замыканиях Вопрос. Исходя из каких нормированных показателей проверяются коммутационные электрические аппараты для отключения цепей при КЗ?Ответ. Проверяются исходя из нормированных

Выбор вида электропроводки. Выбор кабелей и проводов и способа их прокладки

Выбор вида электропроводки. Выбор кабелей и проводов и способа их прокладки Вопрос. Как осуществляется выбор электропроводки?Ответ. Осуществляется в соответствии с табл. 2.1.3 и 2.1.4 настоящей главы Правил (2.1.54).Вопрос. Как производится выбор и расчет нулевых рабочих

Места установки аппаратов защиты

Места установки аппаратов защиты Вопрос. В каких местах сети устанавливаются аппараты защиты?Ответ. Аппараты защиты располагаются в удобных для обслуживания местах таким образам, чтобы была исключена возможность их случайных механических повреждений. Установка их

Установка приборов и аппаратов

Установка приборов и аппаратов Вопрос. Как должны устанавливаться аппараты рубящего типа?Ответ. Должны устанавливаться так, чтобы они не могли замкнуть цепь самопроизвольно, под действием силы тяжести. Их подвижные токоведущие части в отключенном положении, как

Глава VII Попытки создания отечественных винтокрылых летательных аппаратов

Глава VII Попытки создания отечественных винтокрылых летательных аппаратов Шел 1910 год. Пришло время вновь заявить о себе сторонникам аэропланов… И хотя Русское военное ведомство не считалось с аппаратами этого плана, «Первая Авиационная неделя» с 15 апреля по 2 мая 1910

Гражданские применения беспилотных летательных аппаратов

Гражданские применения беспилотных летательных аппаратов Беспилотные автоматизированные летательные аппараты, как самолеты, так и дирижабли, разработанные для военного применения, могут использоваться в гражданской жизни для мониторинга уличного движения или

Виды летательных аппаратов легче воздуха

Виды летательных аппаратов легче воздуха Летательные аппараты легче воздуха составляют три категории: жесткие, полужесткие и нежесткие (с мягкой оболочкой). Оболочка жестких летательных аппаратов обычно сделана из легкого алюминия. Наиболее известными являются

1.3. Выбор электрических аппаратов и проводников

1.3. Выбор электрических аппаратов и проводников Область применения, общие требованияВопрос 57. В чем состоит выбор электрических аппаратов по условиям продолжительных режимов?Ответ. Состоит в подборе их номинального напряжения по уровню изоляции и номинального тока по

1.4. Проверка электрических аппаратов и проводников по условиям короткого замыкания

1.4. Проверка электрических аппаратов и проводников по условиям короткого замыкания Область применения, определенияВопрос 74. Какие электрические аппараты и проводники считаются стойкими при КЗ?Ответ. Считаются такие, которые при расчетных условиях КЗ выдерживают

Установка приборов и аппаратов

Установка приборов и аппаратов Вопрос 4. Как должны устанавливаться аппараты рубящего типа?Ответ. Должны устанавливаться так, чтобы они не могли замкнуть цепь самопроизвольно, под действием силы тяжести. Их подвижные токоведущие части в отключенном положении, как

Выбор вида электропроводки. выбор кабелей и проводов и способа их прокладки

Выбор вида электропроводки. выбор кабелей и проводов и способа их прокладки Вопрос 27. По каким критериям осуществляется выбор электропроводки и способ прокладки кабелей и проводов?Ответ. Осуществляется в соответствии с табл. 2.1.3 (п. 2.1.54).Таблица 2.1.3Выбор электропроводки.

11.2. Материал мембран и конструкции аппаратов

11.2. Материал мембран и конструкции аппаратов Мембраны изготавливаются из полимерных материалов: целлюлозы и ее эфиров, полиамидов, полиолефинов, сополимеров акрилонитрила с винилхлоридом, поливинилхлорида. Применяются и керамики, и металлы.Мембранные аппараты

8.4.2. ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ КОСМИЧЕСКИХ АППАРАТОВ (КА)

8.4.2. ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ КОСМИЧЕСКИХ АППАРАТОВ (КА) Энергетические установки КА. Темпы освоения космического пространства в значительной степени определяются развитием автономных источников электропитания разнообразных космических аппаратов и в перспективе

Релейная защита: чувствительность и её коэффициент

В отечественной практике термином «чувствительность» принято обозначать свойство релейной защиты, позволяющее выявлять расчётные виды повреждений и ненормальных режимов энергосистемы в зоне действия релейной защиты.

В ПУЭ [1] понятие, обозначаемое термином «чувствительность» [2] используют для характеристики любых защит, независимо от напряжения электроустановки, но определение понятия, обозначаемого этим термином в данном документе нет.

Если чувствительность некоторых изделий можно определить непосредственно [1], то в релейной защите эту характеристику оценивают косвенно, причём способ оценки зависит от напряжения электроустановки [1].

Здесь необходимо отметить, что во многих других странах оценку чувствительности не производят [3].

Согласно ПУЭ для оценки чувствительности защит в электроустановках напряжением свыше 1000 В применяют коэффициент чувствительности [4, 5, 6].

Читать еще:  Предохранители для выключателя сапфир

Значение коэффициента чувствительности для защит, реагирующих на возрастание контролируемой величины, находят как отношение их расчётных значений в пределах защищаемой зоны к уставке срабатывания.

Для токовых защит линии коэффициент чувствительности в общем случае находят по формуле:

(1)

где — минимальный ток короткого замыкания для защищаемой линии (обычно – в конце защищаемого участка); — ток срабатывания защиты.

Принято считать, что в общем случае такая защита будет работать правильно, если выполняется соотношение:

Найденное по этой формуле (1) значение коэффициента чувствительности должно быть не меньше нормированного значения, установленного в [1], и которое в зависимости от вида защиты может изменяться от 1,5 до 2,0.

В [3] показано, что при изменении значения коэффициента чувствительности от 1,2 до 1,4 вероятность срабатывания защиты изменяется незначительно, от 0,998 до 1,000.

Рассмотрим теперь, как рекомендуют определять коэффициент чувствительности токовой отсечки в одной из методик расчёта уставок (см. [4], пример 2.1).

Для экономии места исходные данные для расчёта приведены в экспликациях к формулам.

Расчёт начинают с определения пускового тока электродвигателя I пуск эд по формуле:

I пуск эд = k пуск · I ном = 5,7 · 113,2 = 645 А (2)

где k пуск – каталожное значение пускового тока, равное 5,7 для асинхронного электродвигателя серии А4;

I ном – номинальный ток электродвигателя, определенный по известным значениям номинальной мощности, номинального напряжения, коэффициентв полезного действия и мощности или взятый из каталожных данных.

Пусковой ток может быть определён и по приведенному в каталожных данных номинальному току электродвигателя.

Наименьшее значение тока двухфазного КЗ на выводах электродвигателя находим по формуле:

(3)

где – = 3500 — значение тока трехфазного КЗ на вводах питания асинхронного электродвигателя в минимальном режиме работы системы (приведено в исходных данных для расчёта).

Ток срабатывания токовой отсечки рассчитывают по формуле:

(4)

Коэффициент чувствительности защиты при двухфазном КЗ находим по формуле (1), подставив в неё найденные значения:

(5)

На основании выполнений расчётов в методике [4] сделан вывод: «коэффициент чувствительности ТО получился меньше двух».

Можно ли говорить, что уменьшение коэффициента чувствительности всего на 7% (2,00-1,86=0,14; 0,14/2,00=0,07) по сравнению со значением, указанным в ПУЭ, делает данную защиту непригодной?

Отметим, что если в формуле (5) будет использовано расчётное значение = 3031 А, вместо округлённого (3000) расчётное значение коэффициента чувствительности будет всего на 6% (3031/1612 = 1,88) меньше значения, рекомендованного ПУЭ.

Приблизительность такого подхода видна и в том, что в формуле (4) условием несрабатывания ТО при пуске электродвигателя служит выбор множителя, равного 2,5, что и приводит к увеличению расчётного тока и, в конечном итоге, уменьшению коэффициента чувствительности.

Если предположить, а потом опытным путем доказать, что токовая отсечка не будет срабатывать при выборе уставки, равной 2,35 пускового тока электродвигателя, то значение коэффициента чувствительности и при пусковом токе 645 А будет удовлетворять требованиям ПУЭ.

В рассматриваемой методике вместо уменьшения множителя в формуле (4) предложено аналогичное по своей сути действие – уменьшение второго сомножителя путём «уточнения» пускового тока электродвигателя [2].

Отметим, что в любом случае реальный пусковой ток электродвигателя останется неизвестным, а все выводы будут основаны на расчетах, выполненных по каталожным данным электродвигателя.

В методике предложено использовать известную формулу (6) для нахождения пускового тока электродвигателя по найденным расчётным путём сопротивления питающей системы = 0,92 Ом и пускового сопротивления электродвигателя = 5,37 Ом:

(6)

Ток срабатывания токовой отсечки при таком значении пускового тока составит:

(7)

В этом случае значение коэффициента чувствительности возрастает до:

(8)

Если в исходную формулу (5) поставить расчётное значение тока А, то значение коэффициента чувствительности возрастет ещё больше и станет равным 2,18.

После получения искомого результата в методике [4] сделан вывод: «Коэффициент чувствительности ТО получился больше двух, поэтому применять дифференциальную защиту не требуется».

Заключение о таком выводе читатель может сделать самостоятельно.

В электроустановках напряжением до 1000 В для оценки чувствительности токовых защит вместо «коэффициента чувствительности» ПУЭ предусматривает другую характеристику – кратность тока короткого замыкания, задаваемую в процентах по отношению к:

— номинальному току плавкой вставки предохранителя;

— току уставки автоматического выключателя с максимальным расцепителем мгновенного действия;

— номинальному току расцепителя с нерегулируемой обратнозависимой от тока характеристикой;

— току трогания расцепителя с регулируемой обратнозависимой от тока характеристикой.

Значения кратности тока согласно [1] в зависимости от типа аппарата защиты может находится в диапазоне:

Разделив правую и левую часть неравенства на 100%, можно убедиться, что по своей сути это немного видоизменённый способ задания коэффициента чувствительности.

Сказанное выше позволяет сделать такие выводы:

1. Использование термина «чувствительность релейной защиты», прежде всего является данью традиции, а понятие, обозначаемое этим термином, не имеет стандартизированного определения.

2. Оценка чувствительности релейной защиты по-разному, в зависимости от напряжения электроустановки, создаёт ложное впечатление о различии понятий, обозначаемых разными терминами:

— «кратность тока короткого замыкания» (используют в электроустановках напряжением до 1000 В);

— «коэффициент чувствительности» (применяют в электроустановках напряжением свыше 1000 В).

Нормирование «коэффициента чувствительности», а тем более проверка этого коэффициента при расчетах уставок защит, во многом обусловлено свойствами применявшихся ранее реле защиты и перенесено на цифровые устройства без достаточных технических обоснований.

1. Правила устройства электроустановок. М.: Главгосэнергонадзор России, 1998, 608 с.

2. Чувствительность // [Электронный ресурс «Всё о релейной защите], Режим доступа (Материал первоначально был размещён здесь ).

3. Шалин А. И. Надёжность и диагностика релейной защиты энергосистем. Новосибирск, издательство НГТУ, 2002, 384 с.

4. Гондуров С. А., С. В. Михалев, М. Г. Пирогов, А. Л. Соловьёв. Релейная защита электродвигателей напряжением 6-10 кВ терминалами БМРЗ. Методика расчёта. С-Петербург, ПЭИПК, 2013, 60 с.

5. Чернобровов Н. В., Семёнов В. А. Релейная защита энергетических систем. М.: Энергоатомиздат, 1998, 800 м.

6. Коэффициент чувствительности // [Электронный ресурс «Всё о релейной защите], Режим доступа .

7. Что такое коэффициент чувствительности защиты?//[Электронный ресурс], Режим доступа .

[1] Например, в метрологии чувствительности средства измерения находят как отношение изменения выходного сигнала к изменению измеряемой величины.

[2] Для получения требуемого значения коэффициента чувствительности пусковой ток не должен превышать 600 А .

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector