Com-ip.ru

КОМ IP
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент нагрузки автоматический выключатель

Выбор автоматического выключателя (старая версия)

Внимание! Это старая версия статьи — новая доступна здесь .

Автоматический выключатель — это устройство, предназначенное для защиты электрических цепей от перегрузок и токов короткого замыкания (сверхтоков), обеспечения нормального режима протекания электротока в цепи, осуществления управления участками электроцепей. Автоматические выключатели выполняют одновременно функции защиты и управления, бывают однополюсные, двухполюсные, трехполюсные и четырехполюсные.

Основные конструктивные узлы автоматических выключателей: главная контактная система, дугогасительная система, привод, расцепляющее устройство, расцепители и вспомогательные контакты. Расцепители представляют собой реле прямого действия, служащее для отключения автоматического выключателя (без выдержки времени или с выдержкой) через механизм свободного расцепления, который в свою очередь состоит из рычагов, защелок, коромысел и отключающих пружин.

По видам расцепителей автоматические выключатели подразделяются на выключатели с максимальным расцепителем тока, с независимым расцепителем и с минимальным или нулевым расцепителем напряжения.

Контактная система выключателя может быть трехступенчатой (с главными, промежуточными и дугогасительными контактами), двухступенчатой (с главными и дугогасительными контактами) и одноступенчатой. Дугогасительная система автоматического выключателя может состоять из камер с узкими щелями или с дугогасительными решетками.

Только правильно выбранный автоматический выключатель сможет защитить вас и сработает в случае аварии или при опасной нагрузке на вашу электропроводку. Случайный выбор может привести к пожару или поражению электрическим током.

Не рекомендуется применять автоматические выключатели с видимыми повреждениями корпуса, а также устанавливать автоматические выключатели завышенной мощности. Нужно выбирать автоматический выключатель строго под параметры вашей электропроводки, только известных производителей и желательно в специализированных магазинах.

Выбираются автоматические выключатели по номинальному току, напряжению и по условиям эксплуатации (исходя из типа исполнения). Если необходимо выбрать автомат для подключения известных нагрузок необходимо рассчитать ток. Автоматический выключатель должен отключить напряжение при коротком замыкании.

Выбор автоматического выключателя по параметрам короткого замыкания:

где U –напряжение сети (220/380 В)

R – полное сопротивление петли фаза-ноль

k– поправочный коэффициент для автоматических выключателей характеристики В: k = 5; характеристики С: k=10, характеристики D: k = 50.

Расчет минимального номинального тока автоматического выключателя:

где Р – суммарная мощность потребителей (кВт), подключаемых к автоматическому выключателю

4,55 – коэффициент пропорциональности (А/кВт)

Автоматический выключатель должен отключать напряжение при длительном превышении допустимой токовой нагрузки (тепловая защита).

Номинальный ток выбранного вами автоматического выключателя не должен превышать допустимых токовых нагрузок для вашей электропроводки, поэтому, приобретая автоматические выключатели, будьте внимательны с выбором тока. Если Вам продавец советует выбрать автоматический выключатель с током не менее 25А, чтобы при включенном холодильнике, обогревателе, стиральной машине и т.п. его не выбивало, то помните, что в большинстве квартирах проводка выполнена из алюминия сечением 2.5 мм 2 , а такой провод выдерживает максимум 24А. Не забывайте, что автоматический выключатель должен выполнять свое основное предназначение — защищать Вашу сеть от перегрузок.

Допустимая нагрузка на автоматические выключатели , установленные в ряд один за другим

Поправочный коэффициент (K) в случае взаимного теплового влияния автоматических выключателей, установленных рядом друг с другом, при расчетной нагрузке.

Число автоматических выключателейКоэффициент К
11
2. 30,95
4. 50,9
≥60,85

Влияние окружающей температуры на тепловое срабатывание автоматического выключателя (приведенные в столбце 30С токи соответствуют номинальным токам автоматического выключателя, т.к. при этой температуре задается режим срабатывания). В таблице приведены уточненные значения расчетного тока в
зависимости от окружающей температуры.

См. каталог:
Модульные устройства коммутации и управления HAGER
Автоматические выключатели, УЗО и дифф. автоматы Hager
Линейные защитные автоматы — для защиты кабелей и проводов
Автоматические выключатели Hager HMF на токи 80-125А
Автоматические выключатели SASSIN
Автоматы дифференциальные SASSIN серии C45L, C45N

Выбор устройства защитного отключения (УЗО)
Выбор дифференциального автомата
Проведение электромонтажных работ

Если у Вас возникли вопросы по материалу статьи или есть что добавить, пишите нам письмо на электронный адрес mail@electromirbel.ru , сообщение на странице Обратная связь или в Книге отзывов и предложений

Внимание! При полном или частичном копировании материалов данной статьи или другой информации с сайта www.electromirbel.ru , обязательно наличиеактивной ссылки, ведущей на главную страницу www.electromirbel.ru или на страницу с копируемым материалом. Гиперссылка не должна быть запрещена к индексации поисковыми системами (например, с помощью тегов noindex, nofollow и т.д.).

Понравилась эта страница? Поделись ссылочкой с друзьями:

от нагрузки

1 нагрузки

2 нагрузки

3 нагрузки

4 нагрузки

5 нагрузки

6 нагрузки

7 нагрузки

8 нагрузки

9 нагрузки на

10 регулятор нагрузки

11 выключатель нагрузки

  1. loadbreak
  2. load-interrupt switch
  3. load-breaking isolator
  4. load-break switch
  5. load-break cutout
  6. load-break
  7. load switch
  8. load interrupter switch
  9. load interrupter
  10. load disconnecting switch
  11. load break switch
  12. LBS

выключатель нагрузки
Коммутационный аппарат для отключения и включения цепей под нагрузкой в электрических установках напряжением 6-10 кВ (при токах соответственно Iном=200-400 А) и не предназначенных для отключения токов короткого замыкания.
[ Цигельман И. Е. Электроснабжение гражданских зданий и коммунальных предприятий: Учеб. для электромеханич. спец. техникумов. — М.: Высш. шк. 1988 .]

выключатель нагрузки
Выключатель, предназначенный для коммутации электрических цепей в нормальных условиях эксплуатации и в определенных условиях перегрузки, а также для пропускания в течение заданного интервала времени токов в условиях, отличных от нормальных.
Примечание. Выключатель нагрузки может быть способен включать токи короткого замыкания
[СТ СЭВ 1936-79]

Выключатель нагрузки, по сути, представляет собой обычный разъединитель с простейшей дугогасительной камерой. Их начали применять около 60 лет тому назад в электроустановках 3, 6, 10 кВ в тех случаях, когда применение дорогих выключателей оказывается неэкономичным. В те времена этот коммутационный аппарат был выполнен в виде разъединителя и высоковольтного предохранителя, поскольку токи нагрузки в электроустановках 6 – 10 кВ были небольшими, по сравнению с современными нагрузками в электрическую сеть. В этом сочетании, разъединитель был предназначен для отключения и включения токов холостого хода, а также включения токов нагрузки, плавкому предохранителю отводилась роль защиты электроустановки от токов перегрузки и короткого замыкания.

Читать еще:  Схема цепи выключателя по проводам

По мере развития производства и соответственно энергетических нагрузок, токов холостого хода электроустановок стали применять так называемые разъединители мощности. Это устройство объединило в себе выключатель, имевший дугогасительную камеру небольшой мощности, и разъединитель. Такая конструкция использовалась только для коммутирования токов нагрузки и небольших токов перегрузки. Чтобы использовать разъединители мощности в цепях питания силовых трансформаторов и конденсаторных батарей, необходимо было устанавливать дополнительно высоковольтные плавкие предохранители, для осуществления защиты от токов короткого замыкания.

Позднее, усовершенствовав эту конструкцию, путем монтажа простейшего дугогасительного устройства на разъединитель, разработчики пришли к созданию нового коммутационного аппарата, получившего название выключателя нагрузки. Как оказалось, эти аппараты дешевле разъединителя мощности и способны отключать довольно большие емкостные токи, работающих на холостом ходу линий электропередачи даже очень высокого напряжения.
В данное время выключатель нагрузки успешно применяется во многих электроустановках, в том числе в качестве генераторных выключателей, в цепях конденсаторных батарей. Выключатель нагрузки нашел применение и за рубежом, при этом гашение дуги выполняется весьма разнообразными способами: коммутации в воздухе, в вакууме, в элегазе, в трансформаторном масле и т.п. Повысился интерес к ним и у российских и украинских производителей, потому как по прошествии 10-15 лет произошли преобразования в электрических сетях – выделение высокого и низкого напряжений, а выключатель нагрузки является наиболее выгодным вариантом в решении вопроса экономии и надежности питания потребителей.

Выключатели нагрузки
ВНР-10/630 предназначены для работы в шкафах комплектных распределительных устройств (КРУ), камерах стационарных одностороннего обслуживания (КСО) и комплектных трансформаторных подстанциях (КТП) на класс напряжения до 10 кВ трехфазного переменного тока частоты 50 и 60 Гц для системы с заземленной и изолированной нейтралью.

Устройство и принцип работы выключателя нагрузки ВНР-10/630

Выключатель нагрузки состоит из сварной рамы с валом, на которой установлены шесть опорных изоляторов. На трех изоляторах, расположенных в нижней части рамы, крепятся контактные ножи, а на остальных изоляторах, расположенных в верхней части рамы — главные и дугогасительные контакты.

Передача движения от рычагов вала к контактным ножам осуществляется посредством изоляционных тяг.

На концах вала установлены по две отключающих пружины, позволяющих с определенной скоростью отключение выключателя после освобождения механизма свободного расцепления привода, а также два резиновых буфера для смягчения ударов при отключении.

Размыкание дугогасительных контактов происходит в дугогасительных камерах, выполненных из фенопласта и имеющих вкладыши из стеклонаполненного полиамита. Дугогасительным камерам и вкладышам придана дугообразная форма. Это дает возможность входить в них подвижным дугогасительным контактам.

При включении сначала замыкаются дугогасительные контакты, а затем ножи замыкают главные контакты, при отключении сначала размыкаются главные, а затем — дугогасительные контакты.

В отключенном положении подвижный дугогасительный контакт образует видимый воздушный промежуток с дугогасительной камерой, как в обычном разъединителе. При отключении между дугогасительными контактами образуется дуга. Под действием высокой температуры дуги стеклонаполненный полиамит выделяет большое количество газов, поток которых гасит дугу.

РАСЧЕТ ПАРАМЕТРОВ СХЕМЫ

4.3.1 ВЕНТИЛЬНАЯ ГРУППА

Средний ток вентилей IVCP = Id /3 = 858/3 = 286 А.

Учтем коэффициент запаса за счёт нестандартной формы тока К3 = 1,1.

Условие выбора вентилей по току Ioc ср ≥ К3 ∙ IУСР => 1oc ср 346 A .

Ближайший тиристор по справочнику — Т133-400; 1ос ср = 400 А ;

Максимальное рабочее напряжение на вентиле Uvm=U2лин=1,057Udo=1,057∙154 = 162,8 В.

Учтём возможное повышение напряжения сети на 10% и введём 20% запас на перенапряжение КЗ1 = 1,1; К32 = 1,2. Условие выбора тиристоров по напряжению

UПП ≥ КЗ1К32 ∙ Uvm = 1,1 ∙ 1,2 ∙ 162,8 = 214,9 В.

4.3.2. ТРАНСФОРМАТОР СИЛОВОЙ СОГЛАСУЮЩИЙ

По каталогу выбираем силовой согласующий трансформатор типа ТСП 6,0/0,7;

4.3.3 АВТОМАТИЧЕСКИЙ ВЫКЛЮЧАТЕЛЬ

Для отключения преобразователя от питающей сети и защиты от коротких замыканий используется автоматический выключатель. В качестве автоматического выключателя можно использовать выключатель типа АК-50-6,3 на номинальный ток 1Н = 6÷10 А.

По таблице находим величину интенсивности отказа автоматического выключателя

λАО 12∙10 6 1/час.

4.3.4. ОПРЕДЕЛЕНИЕ ВРЕМЕНИ НАРАБОТКИ НА ОТКАЗ ТРЁХФАЗНОЙ НУЛЕВОЙ СХЕМЫ ВЫПРЯМЛЕНИЯ

Время наработки на отказ схемы выпрямителя определяется с помощью суммирования интенсивностей отказа отдельных элементов.

λVO интенсивность отказов вентилей;

λTPO – интенсивность отказов согласующего трансформатора; λАО интенсивность отказов автоматического выключателя; Тогда:

.

Необходимо отметить, что полученное значение Т1 является оценочным, приближённым. В расчёте не учитывается ни реальный характер распределения, ни условия эксплуатации.

4.1. УЧЁТ УСЛОВИЙ ЭКСПЛУАТАЦИИ

При учёте условий эксплуатации формулируется понятие отказа для элементов, определяются физические проявления и показатели отказов для групп однотипных элементов, рассчитываются или выбираются из таблиц или графиков соответствующие значения коэффициентов нагрузки.

4.4.1. ТРАНСФОРМАТОР СИЛОВОЙ СОГЛАСУЮЩИЙ

Учёт степени влияния электрических, тепловых, механических явлений на работоспособность электрических элементов и систем осуществляется с помощью произведения Кн ∙ h, где: Кн — коэффициент нагрузки, h — весовой показатель, учитывающий степень влияния тех или иных факторов.

Свыше 98% отказов трансформаторов малой и средней мощности, по опыту более чем вековой эксплуатации, вызывается пробоем изоляции обмоток, т.е. причинами, зависящими от электрических факторов. Остальные 2% связанны с механическими повреждениями, приводящими чаще всего к исчезновению контактов на клемнике. В трансформаторах большой мощности, при ST > 400 кВА, появляются дополнительные виды отказов, носящие тепловой характер.

При любых видах отказов они являются полными и приводят к отказу источника питания.

Коэффициент нагрузки по мощности трансформатора определяется следующим образом:

Весовой показатель по электрической нагрузке hЭ = 1,5 (выбирается по таблице).

Отсюда

Отметим, что учёт реальных режимов работы приводит к росту интенсивности отказов в два раза.

Коэффициент тепловой нагрузки определяется из выражения

Θр и Θдоп – рабочая и допустимая температура. Они могут быть взяты одинаковыми и равными 135°С;

Θокр ср – температура окружающей среды принята в среднем равной 20°С;

Читать еще:  Схема бесконтактной конечного выключателя

Θcp max – максимальная температура окружающей среды принята равной 40°С;

Тепловая нагрузка большого влияния на надёжностные показатели не окажет, так как все величины температур находится в рабочих допустимых пределах, поэтому значение весового показателя hΘ равно единице. Отсюда:

Наконец считаем, что вибрационная нагрузка на трансформатор, по условиям работы, отсутствует. Таким образом, интенсивность отказов трансформатора с учётом реальных условий работы равна:

4.3.1. ВЕНТИЛЬНАЯ ГРУППА

Отказы тиристоров имеют два проявления:

§ Пробой — короткое замыкание структуры (КЗ);

§ Обрыв — потеря проводимости структуры (ОБР);

– суммарная составляющая интенсивности отказов;

составляющая, зависящая от короткого замыкания;

— составляющая, зависящая от обрыва структуры;

Обычно на основании эксплуатационных данных принимается = 90%;

, т.е. соотношение между составляющими принимается как 9:1.

Проведем расчёт интенсивности отказов с учётом коэффициентов нагрузки. При этом учтём две составляющие причины увеличения интенсивности отказов: электрическую и

тепловую. Электрическая составляющая характеризуется двумя величинами: током и

Коэффициент нагрузки по току вентиля КH1 :

Коэффициент нагрузки по обратному напряжению на вентиле КН2:

Имеем: hЭ2 = 1,1

Коэффициент нагрузки по температуре :

ch hЭΘ ∙ K = ch 1,2 ∙ 1,21 = 2,253

Отказ типа КЗ любого из трёх тиристоров вентильной группы ведёт к короткому замыканию на вторичной обмотке трансформатора. В этом случае автоматический выключатель должен отключить схему от сети, т е. происходит полный отказ. С позиций отказов все тиристоры образуют последовательно соединённую структуру. Интенсивность отказов выпрямителя, вызванная КЗ, определяется простым суммированием или трёхкратным увеличением (по числу тиристоров) величины λКЗ .

Учёт отказов типа ОБР структуры. При отказе одного из трёх вентилей трёхфазной нулевой схемы выпрямления напряжение уменьшается на 1/3, т е. становится равным

(снижение напряжения на 33%). По определению отказа снижение

напряжения на величину 20% и больше означает отказ источника питания в целом. Следовательно, обрыв структуры одного тиристора вентильной группы является отказом выпрямителя. Отказ наступает, если у одного вентиля происходит отказ типа обрыва структуры.

Время наработки на отказ Т1 состоит из одного отрезка времени t1 – от начала эксплуатации до выхода из строя одного из трех вентилей

Из таблицы выберем .

Имеем: Но отказы в виде обрыва имеют место в 10% случаев, следовательно:

Отсюда ; Т1ОБР =t1= 1,96 ∙ 10 5 час .

Для вентильной группы в целом:

Полная интенсивность отказов выпрямителя λV складывается из λV ОБР и λV КЗ .

λV = λV ОБР + λV КЗ =(5,1+29)∙10 -6 = 34,1∙10 -6

4.4.3. АВТОМАТИЧЕСКИЙ ВЫКЛЮЧАТЕЛЬ

Основным функциональным назначением автоматического выключателя является операторное подключение нагрузки к сети, а также аварийное отключение её при тепловой перегрузке и мгновенных перегрузках (функции обеспечения тепловой и максимальной защиты). Отказы связанны с обгоранием главных контактов и неисправностями механической части автоматических выключателей.

Характерной особенностью элементов САУ подобных автоматическим выключателям является наличие трёх режимов работы.

1. Установившийся режим — режим включённого состояния; за время этого режима допускается определённое число оперативных включений и выключений;

2. Режим отключения аварийных перегрузок. Количество аварийных перегрузок, как правило, нормируется. Но частота аварийных перегрузок разработчику не известна.

3. Режим отключенного состояния — режим хранения;

Каждый из режимов характеризуется своей интенсивность отказов. При хранении учитываются условия хранения. Интенсивность отказов при хранении λXP колеблется в пределах (0,01÷0,1)λP . При этом нижний предел — 0,01 принимается при хранении на складе, верхний предел 0,1 — в цехе.

Для автоматических выключателей типа АК, АП, АО, АЗ700 в технических условиях данных по надёжности нет, но оговаривается число оперативных включений. При односменном режиме работы число оперативных включений за смену не превышает десяти. Это позволяет ориентировочно рассчитать ресурс изделия Тγ при односменной эксплуатации.

N – допустимое гарантированное включение за смену (для автоматических выключателей N = 2700;

n – число оперативных включений за смену (я -6

Если принять λРО =3∙10 -6 и λX P , то имеем: λXP = 0,05λPO = 0,05 ∙ 3 ∙ 10 -6 = 1,5∙ 10 -7 1/час

Следовательно, интенсивность отказов автоматического выключателя:

t = tP + tXP среднее время эксплуатации (временем переключения пренебрегаем);

При работе в одну смену Следовательно:

4.4.4. СУММАРНЫЕ ПОКАЗАТЕЛИ НАДЁЖНОСТИ

Теперь можно рассчитать суммарные показатели надёжности изделия в целом.

При ослаблении величин можно определить оптимальный запас ЗИПа, а также наиболее уязвимую часть издел

Расчёт потребляемой мощности, сечения кабеля и номинала автоматического выключателя

Таблица расчёта сечения кабеля в зависимости от нагрузки

Очень часто нам задают вопрос, какой кабель проложить до квартиры, дачи или от щита до электрооборудования. Большинство электромонтажных организаций предпочитает не отвечать на такие вопросы по телефону, ссылаясь на сложность в расчётах. В интернете так же мало освещается эта тема или о ней написано такими заумными фразами, что не каждый электромонтажник разберётся в премудростях. Мы постараемся описать данную проблему так, чтобы любой «школьник» смог профессионально определить подходящее сечение кабеля и выбрать параметры автоматического выключателя (автомат, УЗО, дифавтомат).

Первым делом надо подсчитать общую нагрузку потребляемой электроэнергии. Что это такое и с чем её едят? Каждый электроприбор (чайник, телевизор, компьютер, утюг, стиральная машина, холодильник, люстра итд.) имеет свою потребляемую мощность (она указана на табличках вышеперечисленного электрооборудования). Берём чистый лист бумаги и переписываем всё электрооборудование, которое будет питаться от прокладываемого кабеля. Обязательно подумайте, какое электрооборудование вы предполагаете купить в будущем, так как надо подсчитать таким образом, чтобы через год не выполнять демонтаж и электромонтаж заново для обеспечения работоспособности кабеля с дополнительными нагрузками.

Предположим, что у вас, после долгих передвижений телевизоров, холодильников, стиральных машин и осмотра других электроприборов, вышла суммарная нагрузка в 15000 Вт (считается путём сложения). Так как в подавляющем большинстве квартир разрешается использовать напряжение 220 В, а не 380 В, то мы будем вести расчёт на однофазную систему электроснабжения. Теперь надо подумать, сколько электрооборудования вы будете включать одновременно. Обязательно вспомните 31 декабря, когда у вас включены почти все электроприборы (чайник, электрическая духовка, стиральная машина, посудомоечная машина, миксер, микроволновая печь, пылесос, два телевизора и все люстры, бра, утюг). Получается довольно внушительная цифра, и вы кричите, что ни в коем случае не включите всё одновременно, но ведь можете включить. Сумму 15000 Вт мы умножаем на коэффициент одновременности 0.7 (70 %), получается 10500 Вт (15000 х 0.7 = 10500). Итак, после всех пересчётов у нас вышло, что вам требуется 10500 Вт.

Читать еще:  Выключатель промежуточный ip55 plexo серый

Теперь давайте определимся, какой автоматический выключатель (вводной автомат, УЗО) вам нужно установить на питающий кабель (вводной кабель). Берём полученную сумму нагрузки 10500 Вт и делим её на напряжение 220 В — получаем 47.73 А (10500 : 220 = 47.73) и округляем до 48 А. Так как в продаже не существует автоматических выключателей на 48 А, то мы берём 50 А. Можно взять 40 А, но тогда вы уменьшаете себе возможность использовать предполагаемую нагрузку. Для проверки вы можете всё проделать в обратном порядке и подсчитать, сколько у вас выйдет, если поставить 40 А выключатель (40 х 220 = 8800) или (50 х 220 = 11000).

Вводной кабель — это артерия энергосистемы, и его надо выбрать таким, чтобы не было стыдно и обидно за прожитые годы. Есть два вида кабеля — алюминиевый и медный. Мы рассматриваем только медный, так как алюминиевый по своим техническим данным во много раз хуже по проводящим характеристикам и вообще запрещён для электромонтажа. Кабель обязательно должен быть трёхжильным, потому что система электроснабжения помещений и электрооборудования требует заземления. Вам надо определиться с вариантом электромонтажа вводного кабеля — открытая проводка или закрытая. Для определения сечения кабеля мы прикрепляем к этой статье таблицу и вы спокойно по ней можете узнать его. Открытая проводка, медь, ток 50 А, 220 В, мощность 11 кВт (11000 Вт), сечение кабеля 6 мм2. Если вы возьмёте сечение 10 мм2, то в будущем вам не придётся задумываться над увеличением мощностей, так как ваш вводной кабель проложен с запасом на увеличение мощности.

Постарайтесь всё сделать профессионально и оставьте электромонтажников и пожарников без работы.

1 . Как рассчитать сечение основного подводящего кабеля для последующего подключения разного электрооборудования на 380 В суммарно в кВт вы можете узнать пройдя по ссылке на странице:

«Расчёт сечения кабеля«

2. Как измерить поперечное сечение проводника по диаметру жилы вы можете узнать пройдя по ссылке не страницу:

«Как измерить поперечное сечение проводника (провода, кабеля)?«

3. Расчитать номинал автоматического выключателя вы можете по формуле опубликованной на странице:

«Как расчитать номинал автоматического выключателя«

ВНИМАНИЕ! В интернете объявился мошенник Леонид Мирошко из Киева со своей программой WireSel — выбор сечения провода по нагреву и потерям напряжения, которую он продаёт. Опасайтесь этого ЖУЛИКА, так как программа WireSel имеет большое количество технических ошибок, что неминуемо приведёт к пожару.

Прочая и полезная информация

Читайте также:

  • Диагностика причин отключения автоматического выключателя в силовом щитке

54 Комментария(-ев) на ”Расчёт потребляемой мощности, сечения кабеля и номинала автоматического выключателя”

Подскажите, пожалуйста, какое нужно сечение алюминиевого кабеля АВВГ от трансформаторной подстанции, при протяжённости трассы 200 м в земле? Мощность — 100 кВт.

Здравствуйте, Анатолий!
Ваш вопрос перенаправлен на Электротехнический Форум «ЭлектроАС». Вы можете зарегистрироваться на форуме и более подробно обсудить «Как рассчитать необходимое сечение алюминиевого кабеля?» с участниками форума.

Смотрю вашу таблицу расчёта сечения кабеля в зависимости от нагрузки и не пойму.
К примеру сечение 1.0кв по таблице нагрузка 3.0квт
Я точно знаю что кабель будет горячий и будет провисание по напряжению!
А открытою проводку можно использовать вместо обогревателей!

Уважаемый Саня!
Данная таблица взята из ПУЭ, глава 1.3.
Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами;
Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами.

Нужно подключить очень большой цех. ВРУ на 630 А, расстояние от ТП до ВРУ 100 – 150 метров. В цеху ; 20 шт сварочников по 400 ват , 2 шт гильотины. Лентопилы, сверлилки, токарные, фрезерные – все по 2 шт. Освещение 35 светильников по 1000 ват,компрессоры 8 шт, 3шт кранбалки. Кабель пойдет в кабель-канале по стене. Помогите рассчитать сечение алюминиевого кабеля.

Здравствуйте, Алексей!
Ваш вопрос перенаправлен на Электротехнический Форум «ЭлектроАС». Вы можете зарегистрироваться на форуме и более подробно обсудить «Как рассчитать сечение алюминиевого кабеля от ТП до ВРУ?» с участниками форума.

Нужно подключить кабель АВВГ от ТП с РУ-0,4 кВ компрессор мощностью 206 кВт. Подскажите, какого сечения выбрать кабель?

Здравствуйте, Байжан!
Ваш вопрос перенаправлен на Электротехнический Форум «ЭлектроАС». Вы можете зарегистрироваться на форуме и более подробно обсудить «Какого сечения выбрать кабель АВВГ?» с участниками форума.

Мне надо подключить оборудование общей мощностью 360 квт. Коэффициент загрузки- 0,8.. Кабель можно вести по эстакаде по воздуху. Предлагается решение — Алюминий СИП-4 4*120 или 4*150.Ложатся параллельно 2 линии( 2* СИП-4 4*120 или 4*150). Правильно ли?

Здравствуйте, Олег!
Ваш вопрос перенаправлен на Электротехнический Форум «ЭлектроАС». Вы можете зарегистрироваться на форуме и более подробно обсудить «Правильно ли выбрали сечения проводников?» с участниками форума.

Как рассчитать необходимое сечение для медного (3-х жильного) кабеля для 6000 вольт; 2000 кВА длиной в 260 метров.

Здравствуйте, Александр!
Ваш вопрос перенаправлен на Электротехнический Форум «ЭлектроАС». Вы можете зарегистрироваться на форуме и более подробно обсудить «Как рассчитать необходимое сечение для кабеля?» с участниками форума.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector