Com-ip.ru

КОМ IP
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Особенности настройки защиты селективных автоматических выключателей

Принцип селективности для выбора автоматических выключателей и УЗО

При прокладке электропроводки в квартирах создаются электросхемы, в которых всегда учитываются вопросы безопасной эксплуатации. Электрический ток может причинить большой вред. Чтобы этого не произошло, устанавливают устройства защиты: предохранители, автоматические выключатели, УЗО, дифавтоматы и другие средства.
Все они обладают определенными, конкретными возможностями, но не могут быть универсальными. Поэтому при выборе приборов следует четко учитывать их индивидуальные характеристики. Только в этом случае они будут правильно работать, а не создадут лишних проблем в будущем.

  1. Принцип селективности для выбора автоматических выключателей и УЗО
  2. Виды селективности
  3. Подбор автоматических выключателей по времени срабатывания
  4. Подбор автоматических выключателей и УЗО по току срабатывания

Принцип селективности для выбора автоматических выключателей и УЗО

Это свойство еще именуют избирательностью. Селективность позволяет надежно эксплуатировать электрохозяйство благодаря правильному подбору защитных устройств.
Для любой электрической схемы применяется иерархия автоматов защиты, разделяющие электропроводку с потребителями на определенные участки — электрические цепи, даже когда ток идет от источника к потребителю напрямую, минуя промежуточные звенья. Неисправность в этой самой простой схеме может возникнуть внутри:

  • генератора;
  • приемника;
  • или соединительных проводов.

Каждый из этих случаев требует своего технического решения, которое позволит быстрыми способами надежно выявить и локализовать поврежденный участок.

Селективность определяет правила установки и совместимости защит. Для этого вся система электроснабжения разбивается на отдельные составные участки, делится на зоны с включением в них отключающих аппаратов, реагирующих на появление неисправностей.

Виды селективности

  • абсолютная;
  • относительная.

Принцип абсолютной селективности подразумевает отключение возникающих повреждений исключительно в своей зоне.
Защиты, выполненные по относительному принципу, реагируют на неисправности своего и соседних участков. Они могут сработать по любому пусковому фактору. Поэтому для исключения ложных отключений их наделяют дополнительными функциями:

  • величиной выдержки времени на срабатывание;
  • уставками по току, напряжению, частоте, электрическому сопротивлению, направлению мощности или другим параметрам сети.

Подбор автоматических выключателей по времени срабатывания

Этот принцип можно продемонстрировать схемой.

селективность по времени

Для объяснения ее работы все автоматы наделены одной уставкой тока отсечки в 25 ампер, но отключают поврежденный участок с разным временем.
При возникновении неисправности в схеме любого потребителя, например, запитанного от автоматического выключателя №3, ток короткого замыкания почувствуют автоматы:

  • неисправного участка №3;
  • распределительного щита №2;
  • ГРЩ №3.

Выдержка времени на срабатывание 0,1 сек самая маленькая у автомата №3. Он сработает первым, локализовав неисправность. Ток повреждения прервется, а автоматические выключатели №2 и №1 останутся включенными для продолжения электроснабжения потребителей зон №4 и №5.

В этой ситуации возможна поломка автомата №3, тогда он не сработает. Ток КЗ после прохождения времени 0,1 сек останется в схеме. Его через выдержку времени 0,5 сек отключит защита распределительного щита — автоматический выключатель №2.

Он резервирует работу защит участка №3, но дополнительно отключает потребителей цепочек №4 и 5 на которых ток КЗ отсутствовал.

Если по каким-то причинам этот автоматический выключатель тоже окажется неисправным, то функцию устранения токов замыкания выполняет защита главного распределительного щита (ГРЩ) автоматом №1. Следует представлять, что она через 1 сек обесточит не только участки зон №3, 4 и 5, запитанные от выключателя РЩ №2, но также других потребителей, которые подключены к дополнительным распределительным щитам ГРЩ №1.

Про типы УЗО и его подключение подробно описано статьях:

Подбор автоматических выключателей и УЗО по току срабатывания

Представленная схема показывает принцип выбора автоматических выключателей и УЗО по току срабатывания. Здесь выполняется тот же принцип, что и в предыдущей схеме: вначале должны работать защиты, ближайшие к месту повреждения, а их резервированием занимаются аналогичные устройства следующей, второй очереди.

При КЗ в цепях потребителя №3, 4, или 5 отключаются вначале автоматический выключатель поврежденного участка, а автомат №2 резервирует его работу. В свою очередь, исправность защиты распределительного щита страхует выключатель №1 ГРЩ.

Устройство защитного отключения контролирует состояние схемы на отсутствие токов утечек. Наибольшее значение уставки в 300 mA назначается защитам ГРЩ №1. Самые маленькие уставки 30 mA выставляются на УЗО конечных присоединений. В РЩ головное УЗО №2 настраивается на срабатывание промежуточных значений 100 mA.

На практике уставки для защит выставляются по комбинированному методу с учетом совмещения принципов селективности по времени, току и другим параметрам, дополняющих надежность рабочей схемы.

Решаемые задачи

Принцип селективности позволяет обеспечить:

  • электробезопасность оборудования и людей;
  • автоматическое определение зоны неисправности и ее локализацию;
  • снабжение электричеством исправных участков, смежных с поврежденным;
  • поддержание качества электроэнергии для всех потребителей.

По этим причинам избирательность защитных устройств следует всегда учитывать на практике для выбора аппаратуры при прокладке электрической проводки для надежной эксплуатации электрооборудования.

Селективность между модульными автоматическими выключателями

Что общего у крупного центра обработки данных и небольшой серверной, у морской нефтяной платформы и энергодиспетчерского пункта на железной дороге, у городской поликлиники и банка? Все эти объекты относятся к потребителям I и особой категории электроснабжения и поэтому должны отвечать самым высоким требованиям к уровню электрической стабильности.
Достичь бесперебойной и качественной работы энергоустановок информационных систем, сервисов безопасности и контроля доступа и пр. можно только при условии реализации полной селективности на всех уровнях распределения. Данное утверждение в особенности касается модульных автоматических выключателей в низковольтных распределительных щитах.

Глоссарий специалиста

Селективность согласование работы установленных последовательно защитных аппаратов, таким образом, чтобы в случае перегрузки или короткого замыкания (к.з.) отключалась только та часть установки, где возникла неисправность.

Полная селективность — обеспечивается в случае, когда при последовательном соединении двух автоматических выключателей оборудование со стороны нагрузки (потребителя) осуществляет защиту без срабатывания устройства со стороны питания.

Частичная селективность — отличается от полной тем, что оборудование со стороны нагрузки осуществляет защиту без срабатывания устройства со стороны питания лишь до определённого уровня сверхтока Is (предельный ток селективности).

Зона перегрузки — диапазон значений тока, в котором за срабатывание отвечает тепловой расцепитель (биметаллическая пластина). Представляет собой обратнозависимую характеристику.

Зона короткого замыкания — диапазон значений тока, в котором за срабатывание отвечает электромагнитный расцепитель. Обеспечивает практически мгновенное срабатывание.


Рис. 1. Зона перегрузки и зона короткого замыкания

Полная селективность между модульными автоматическими выключателями

Как правило, специалисты решают задачу согласования рабочих характеристик модульных автоматических выключателей со стороны питания и нагрузки, используя токовый метод. Он основан на выборе аппаратов защиты с разными уставками по току, причём более высокие значения должно иметь оборудование на стороне питания. Для подбора автоматических выключателей используются таблицы селективности и специальное программное обеспечение. Но даже такая тщательная проработка схемы позволяет добиться лишь частичной координации рабочих характеристик модульных автоматических выключателей. Полная селективность обеспечивается только в распределительных боксах, где расчётные токи к.з. небольшие, что на самом деле редкость. Как правило, даже в квартирных щитах достигается лишь частичная селективность. Рассмотрим такой пример – в электрическом шкафу установлены автоматические выключатели с характеристикой С. Номинальный ток вводного аппарата — 32А, устройства на отходящей линии – 16А. Нижняя граница зоны срабатывания вводного автомата 5In=5·32=160А. Она же является и верхней границей срабатывания для нижестоящего автомата. 1 Очевидно, что в данном случае полная селективность не обеспечивается.

Читать еще:  Дистанционное управление автоматическими выключателями

Часто задача согласованной работы автоматических выключателей со стороны нагрузки и питания во всём диапазоне сверхтоков остаётся нерешённой, что приводит к авариям. «Не так давно в одном крупном банке из-за чайника, случайно включённого в розетку «чистых» сетей 1 , и отсутствия полной селективности в распределительных шкафах были обесточены все компьютеры на этаже, что привело к потере полугодового отчёта», — рассказывает Алексей Азаров, начальник отдела электрических сетей и систем компании «ЭкоПрог».

До недавнего времени полную селективность можно было реализовать, установив в качестве вводного устройства в распределительном щите вместо модульного автоматического выключателя аппарат в литом корпусе. Для указанного оборудования возможны такие способы координации рабочих характеристик, как временной, энергетический и зонный 2 . Но данное решение не всегда целесообразно, так как оно приводит к таким последствиям, как:

  • удорожание проекта;
  • увеличение занимаемых распределительными шкафами площадей – аппараты в литом корпусе и воздушные автоматические выключатели по своим габаритам значительно превосходят модульное оборудование;
  • сложности в установке и эксплуатации (аппараты в литом корпусе оснащаются электронными расцепителями, которые нуждаются в настройке).

«Заменить модульные автоматические выключатели на аппараты защиты другого типа для инженера означает пожертвовать компактностью и единообразием технических решений, а это не всегда возможно, — утверждает Павел Томашёв, инженер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации. — Специально для того, чтобы решить проблему обеспечения полной координации между модульными аппаратами защиты, наша компания разработала новый селективный автоматический выключатель серии S750DR. Данное устройство – новинка для нашей страны. Оно представляет решение для достижения согласованности рабочих характеристик, при котором невозможно одновременное отключение вышестоящего и нижестоящего аппаратов. В данном модульном автоматическом выключателе реализован дополнительный токовый путь, благодаря которому обеспечивается задержка срабатывания по времени. Линейка автоматических выключателей S750DR включает в себя аппараты от 0,5 до 63А».

Селективный модульный автоматический выключатель обеспечивает координацию рабочих характеристик аппаратов защиты независимо от напряжения сети. Такой аппарат защиты не требует дополнительного питания для замыкания/размыкания контактов и для выполнения защитной функции, поскольку устройство является электромеханическим.

Принцип действия селективного модульного автоматического выключателя


Рис. 2. Схема внутреннего устройства селективного автоматического выключателя

Рассмотрим схему внутреннего устройства селективного модульного автоматического выключателя, представленную на рис. 1. На иллюстрации видны два токовых пути. Один из них — основной, состоит из тех же элементов, что и в обычном автоматическом выключателе: электромагнитной катушки (мгновенный расцепитель), биметаллической пластины (расцепитель перегрузки) и блока основных контактов. Второй — токовый путь, реализованный в аппаратах S750DR, получил название дополнительного. Он состоит из изолирующих контактов, селективного биметалла и резистора.

Ознакомимся с принципом действия селективного модульного автоматического выключателя на практике. В системе, где в качестве вводного устройства используется селективный модульный автоматический выключатель, а в качестве нижестоящего аппарата – обычный автомат, короткое замыкание может произойти в линии нагрузки или между вводным и отходящим устройствами.

1. Короткое замыкание в линии нагрузки

В момент аварии сработают расцепители аппарата со стороны нагрузки и основного токового пути автоматического выключателя со стороны питания. Однако при этом ток продолжит протекать по дополнительному контуру вводного устройства. Так как аппарат со стороны нагрузки сработал (например, время срабатывания автомата S200 от АББ около 5-8 мс) и отключил повреждённый участок цепи, пружина снова замкнёт блок контактов в основном пути селективного автоматического выключателя. Таким образом, обеспечивается непрерывное протекание тока и бесперебойность питания нагрузок.

2. Короткое замыкание между вводным и отходящим аппаратами защиты

В момент аварии так же, как и в предыдущем варианте, размыкаются контакты селективного аппарата. Далее, поскольку авария не устранена, селективный биметалл с небольшой задержкой по времени размыкает контакты в дополнительном токовом пути и блокирует пружину. Разомкнутыми остаются и основной, и вторичный контур, что и обеспечивает защиту от к.з.

Токоограничивающая селективность

В селективных автоматических выключателях реализована токоограничивающая селективность. Она обеспечивается за счёт конструктивных особенностей аппарата: резистора сопротивлением 0,5 Ом и способности устройства быстро размыкать контакты в случае появления к.з. (примерно за 1 мс), что приводит к возникновению между ними дуги, которая также представляет собой сопротивление. При этом осуществляется резервная защита автоматического выключателя со стороны нагрузки, что позволяет минимизировать воздействие аварии на всю установку и сети питания.

Благодаря токоограничивающей селективности можно выбирать нижестоящий автоматический выключатель с предельной отключающей способностью ниже, чем ожидаемый ток короткого замыкания. «В случае аварии вышестоящий селективный аппарат ограничит сверхтоки введением сопротивления дуги в цепь к.з. Устройство снизит протекающий ток и поможет нижестоящему модульному устройству отключить повреждение, – поясняет Павел Томашёв (АББ). — Таким образом, за счёт дополнительного токоограничения вышестоящего аппарата серии S750DR отключающая способность нижестоящего автоматического выключателя увеличивается».

Рис. 3. Поддержка следующих за S 750 DR
автоматических выключателей при коротком замыкании

Как показано на рис. 3, независимо от номинального тока аппарата S 750 DR при коротком замыкании значительно снижаются ток к.з. и удельная пропускаемая энергия.

Инженеры-проектировщики систем электроснабжения уже успели оценить новую разработку. По словам специалистов, серия S750DR значительно упрощает процесс разработки технической документации, так как отпадает необходимость в использовании таблиц селективности и специальных программ подбора оборудования. Удобна новая разработка и с точки зрения эксплуатации – аппарат оснащён встроенной блокировочной панелью. Она позволяет фиксировать положение рычага управления, что исключает возможность доступа посторонних лиц к управлению устройством. Блокировка не влияет на защитные свойства аппарата: расцепитель сработает и предотвратит неполадки в сети, несмотря на фиксацию рычага во включённом положении.

Проектирование селективной установки — задача сложная и трудоёмкая. Подходить к её выполнению нужно ответственно: любая ошибка чревата авариями, которые могут повлечь за собой тяжёлые последствия для персонала и оборудования. Именно поэтому селективность должна обеспечиваться на разных уровнях. Современное оборудование позволяет добиться полной координации работы электрических аппаратов.

1 «Чистыми» сетями называют сети электроснабжения компьютеров и другой офисной техники, чувствительной к скачкам напряжения.

2 Подробнее о различных технологиях обеспечения селективности в сетях электроснабжения можно прочитать по ссылке.

Селективные автоматические выключатели

Селективные автоматические выключатели – это современные устройства защиты. Они обеспечивают селективность (выборочность), т.е. защиту сразу по нескольким вариантам сработки. Устройства способны, условно говоря, различать — от чего защищать сеть и какие исполнительные механизмы задействовать. Слова и фразы сложные, но описывают они большинство современных автоматических выключателей и приборов защиты, которые появились на их основе. Это позволяет при возникновении аварийной ситуации отключать не всю сеть, как 30-40 лет назад, а только проблемный участок. Вторая задача селективных приборов – обеспечить работоспособность сети при коротких перегрузках, не отключая всю систему электроснабжения.

Читать еще:  Выключатели кнопки регуляторы оборотов

Чтобы понимать, что такое селективный автомат, надо вернуться к азам. Сеть защищают обычно по двум параметрам. Первый – защита от перегрузки линий по току или мощности, из-за превышения которых проводники могут греться, что в итоге приводит к возгоранию, или, как минимум, к перегоранию проводника (обычно в месте самого слабого контакта). Для защиты по данному типу воздействия используется тепловой расцепитель – подвижная биметаллическая пластина, встроенная в цепь автомата, которая при нагревании способна разрывать линию передачи тока. Ее предшественник – одноразовый плавкий предохранитель.

Второе – защита от тока короткого замыкания. Здесь сложнее: ток КЗ – очень большой ток, который способен пройти по проводнику без наличия нагрузки и буквально сжечь потребителя. То есть ток короткого замыкания действует намного быстрее, чем греется проводник. Этот ток распознается за счет устройства электромагнитного расцепителя. Ранее они использовались только как отдельные устройства защиты.

По сути, на данных двух системах сегодня строится любой самый простой автоматический выключатель. И он уже обладает селективностью по типу сработки. Далее степени селективности автомата только добавляются. Например, если на автомате реализована сработка с отсрочкой по времени при сверхтоках пуска (автоматы группы D по время-токовой характеристике, используются для подключения асинхронных двигателей) – то это еще одна степень селективности.

Указанные выше два типа защиты можно реализовать за счет одной системы определения силы тока в автомате с применением электронного, полупроводникового и других типов расцепителей. Такие устройства сегодня можно программировать, настраивать, что обеспечило им применение в промышленности, где требуются различные варианты работы оборудования и его защиты. Это высшая форма селективности.

Развитие темы селективности устройств защиты простые автоматы превратило сегодня в дифавтоматы, а после и в УЗО с функциями молниезащиты. Таким образом, селективность обеспечивает не только защиту и отключение цепи, но и развитие оборудования для контроля безопасной работы любых цепей.

У любого автомата сегодня есть несколько параметров сработки, как минимум два: ограничение по току (срабатывает тепловой расцепитель), ограничение по току короткого замыкания (обычно для обеспечения данного параметра используется электромагнитный или электронный расцепитель).

Селективные автоматические выключатели появились как ответ для решения ряда проблем. Это и дороговизна обслуживания систем после аварийных ситуаций, постоянные затраты на комплектующие (предохранители меняются на новые постоянно, а автомат может выдержать до 10000 циклов отключения), для снижения уровня простоя оборудования при ложных срабатываниях.

Проблемы селективной защиты при выборе автоматических выключателей

Сегодня вашему вниманию хочу предложить очень обсуждаемую тему селективной защиты автоматических выключателей. Если вы думаете, что здесь все просто и однозначно, то это не совсем так. В чем же особенность селективной защиты?

В наших нормативных документах про селективную защиту практически ничего не сказано.

Однако, в итальянском Стандарте CEI 64-8 “Электрические установки с номинальным напряжением ниже 1000 В переменного тока и 1500 В постоянного тока” в отношении установок низкого напряжения в части 5 “Выбор и монтаж электрических компонентов” написано:

“Селективность между устройствами защиты от сверхтоков (536.1).

Когда несколько защитных устройств установлены последовательно, и это оправдано требованиями эксплуатации, их рабочие характеристики должны выбираться таким образом, чтобы отключать только часть установки, где возникла неисправность.”

В комментариях, кроме всего этого, добавлено следующее:

“Рабочие ситуации, требующие селективности, определяются пользователем или проектировщиком установки.”

Из этого следует, что Стандарт указывает на то, что рабочие характеристики должны быть выбраны с обеспечением селективности, когда это оправдано требованиями эксплуатации.

А теперь рассмотрим проблемы, которые могут возникнуть при выборе автоматических выключателей с учетом селективной защиты.

Основная масса автоматических выключателей примерно до 400А применяется без регулируемых расцепителей, неговоря уже про модульную серию. Остановимся на автоматических выключателях модульной серии, т.е. до 125А.

Диапазоны токов мгновенного расцепителя

Как известно, автомат защищает от перегрузки и короткого замыкания. Модульные автоматические выключатели могут иметь электромагнитные расцепители с характеристиками B, C, D.

Зависимость времени срабатывания ВА от тока в его цепи

Чтобы правильно выбрать автомат, нужно уметь читать график зависимости времени срабатывания автоматического выключателя от тока в цепи, т.е. время-токовую характеристику автомата. Ниже представлена время-токовая характеристика автоматического выключателя ВА47-29 16С.

Время-токовая характеристика автоматического выключателя ВА47-29 16С

Зона между красными линиями нам показывает интервал времени срабатывания автомата. Например, при токе 2,55*16=40,8А данный автомат сработает за время от 1 до 60 сек.

В своих проектах полную селективность я практически никогда не обеспечиваю, поскольку обеспечить ее крайне трудно на автоматических выключателях модульной серии.

Селективность можно разделить на две зоны:

  • селективность в зоне перегрузки;
  • селективность в зоне короткого замыкания.

Селективность в зоне перегрузки я обеспечиваю всегда во всех проектах без исключения. Здесь все просто. Если группой автомат 16С, то автомат выше будет как минимум 20С. Такую расстановку выключателей все, и я в том числе, называем селективностью. Но если разобраться, то в зоне короткого замыкания такие автоматы не будут селективными.

Чтобы модульные автоматические выключатели были селективными, то соотношение их номиналов должно быть примерно 2,5 при условии, что автоматы с одинаковыми электромагнитными расцепителями. На следующем графике приведены время-токовые характеристики автоматов D6, D16, D40.

Соотношение модульных автоматов

Как видим, даже у этих автоматов есть небольших общие зоны срабатывания.

В следующем примере сравним B6, C20, D63.

Сравнение B6, C20, D63

Здесь уже общих пересекающихся зон не наблюдается. Соотношение номинальных токов около 3,2.

Кстати, чтобы обеспечить селективность предохранителей их соотношение должно быть примерно 2,5.

Смысл всей этой статьи в том, что в 99% случаях полная селективность нам и не нужна. В наших проектах у нас выполняется лишь частичная селективность в зоне перегрузки.

Селективность нужно там, где это может повлечь серьезные последствия. А если у нас от к.з. сработают 2-3 последовательно включенных автомата, то никакой трагедии не произойдет. Тем более, что короткие замыкания происходят не так часто.

Советую почитать:

комментарий 31 “Проблемы селективной защиты при выборе автоматических выключателей”

У АВВ есть селективный модульный выключатель ABB S750 DR. Он обеспечивает селективность в зоне КЗ. Только стоимость этого чуда техники оставляет желать лучшего. Да и найти такую штуку не просто.

А с учетом того, что приходится проектировать очень много бюджетных объектов, кроме как на IEK, EKF и т.п. рассчитывать не приходится.

У IEK модульных селективных выключателей не видел.

а их и нету у ИЕК

Читать еще:  Характеристики автоматических выключателей c120n

Очень нравиться статьи. Хочу напечатать и создать папку для молодых инженеров. Как скопировать стаью полностью?

Статья отличная, главное очень доходчиво все разъясняется. Сразу направил ссылку одному из своих заказчиков, в загородном коттедже при дуговом коротком замыкании в розетке, выбивает входной автомат в щите ввода на улице. Заказчик должен знать, что проблемы не только у него.

К сожалению, но даже используя автоматы с электронными расцепителями с выдержками времени, не всегда можно добиться полной селективности.

Например, для серии Compact NSX с токами 100. 630 А с расцепителем Micrologic 5.

У него регулируются уставки по перегрузке, селективная токовая отсечка с выдержкой времени и мгновенная токовая отсечка.

Проблема в мгновенной токовой отсечке Ii.

Токи короткого замыкания могут превышать максимальное значения уставки Ii.

В этом случае селективности не будет.

Например, для NSX100 Ii=15*In=15*100=1500 А.

Такие токи КЗ весьма вероятны для шин ВРУ, а часто могут быть существенно больше (например, вблизи подстанции).

При этом для токов до 630 А многие модели автоматов не позволяют вывести из работы мгновенную токовую отсечку (Ii — off).

Вот и получается, что даже применяя для РУ-0,4 кВ подстанций и ВРУ-0,4 кВ зданий автоматы с электронными расцепителями селективность будет частичной.

У «Шнайдера» есть хорошая онлайн-программа.

Максимальные значения уставки Ii будут регулироваться. Ток КЗ будет идти к своему максимальному значению не мгновенно. Возможен ли такой вариант, что при нарастании тока КЗ нижестоящий выключатель вырубится раньше? (Хоть и при установленном значении они вырубились бы оба)

А при нарастании тока КЗ нижестоящий автомат не успеет отключиться раньше при разных значениях Ii? (Хоть и установленное значение КЗ превышало бы оба показателя Ii)

В наших нормативных документах про селективную защиту практически ничего не сказано.

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

В книгах советских корифеев достаточно много уделено внимания селективности (Шабад, Беляев и др.).

Вячеслав! Сомневаюсь. «Шнайдер» пишет, что при ТКЗ более Ii селективность неполная, частичная. Полная селективность там, где Ii можно отключить (Ii — off).

Регулировать Ii можно. Но при токах Ir близких к In это мало что даст. См. пример выше. Для NSX100 максимальное Ii=15*In=15*100=1500 А.

При ТКЗ в 3000 А могут сработать оба автомата.

Тогда надо специально завышать In, чтобы Ii было больше.

Но это не всегда возможно и не всегда оправдано. В любом случае при больших ТКЗ даже этой меры не хватит.

Единственный плюс в данном случае следующее. Часто (но не всегда)для распред. сетей с большими расчетными токами

1-фазное ТКЗ находится в пределах Isd и Ii.

Учитывая, что 1-фазное КЗ чаще трехфазного, селективность будет.

Но если минимальное 1-фазное КЗ больше Ii (характерно для точек близких к подстанциям), то селективности не будет.

В принципе Ii вообще не нужна, но у многих автоматов ее нельзя отключить (на форуме Colan этот вопрос уже поднимал).

Ребята, извиняюсь, был неправ. Не учитывал кривые токоограничения и рефлексное отключение. Подробнее — см. каталоги производителя.

А вообще полная селективность не всегда нужна. Сам в своем опыте не встречал требований полной селективности. А при таких авариях с такими токами КЗ надо не за селективностью уже следить, а за наличием качественной пожарной сигнализации.

Наткнулся на очередную полезную и интересную статью, за что очень благодарен ее автору!

Хочу задать вопрос о селективности автоматов 0,4 кВ в питающих сетях.

Прописано ли в каком-нибудь документе требование, что уставка срабатывания расцепителя аппарата защиты на питающем фидере в ВРУ здания должна быть больше уставки срабатывания расцепителя аппарата защиты на вводе ВРУ, т.е. с другой стороны?

На этот счет у меня возникли разногласия с инспектором надзора.

Для электроснабжения промпредприятия запроектирована комплектная ТП, от которой запитаны 8 ВРУ-0,4кВ. Причем изначально запроектирована именно КТП (требование заказчика). Ведь по-хорошему, изначально должен выполняться проект внутреннего электроснабжения, а уже после — проект по КТП (см. статью Порядок проектирования электроустановок ).

Предварительно посчитаны нагрузки на стадии А (архитектурный проект, РБ), на основании чего выполнен проект по комплектной ТП с учетом разработанных совместно с заказчиком решений по внутреннему электроснабжению.

Проект по ТП на стадии С (строит. проект) согласован в РЭС, филиалах Энергонадзор и Энергосбыт и передан заказчику.

Прошло время, закончен и проект по внутрянке, в результате чего уточнены нагрузки по каждому ВРУ.

К тому же изначально расчетные коэффициенты мощности (cos) всех ВРУ были завышены (особенности расчета нагрузок по РТМ — в расчете Qр для питающих сетей не фигурирует коэффициент Кр, см. п. 3.2.8, что завышает cos) — вместо первоначальных 0,94 получилось 0,84 (пример для одного ВРУ). Соответственно выпросли расчетные токи, в связи с чем пришлось корректировать уставки АВ-0,4 кВ на КТП. Внес изменения, поехал на согласование корректировок по всем инстанциям. Дошел до Энергонадзора.

Начинаю объяснять инспектору, что по результатам выполнения проекта по внутреннему электроснабжению предприятия требуется поднять уставки на АВ в РУ-0,4кВ КТП. Показываю в качестве примера:

— «Рассмотрим ВРУ-5, у которого изначально предусмотрена уставка аппарата на вводе (ВА88-37+МР211) — 320А, при этом уставка автомата на питающем фидере от ТП к ВРУ-5 — тоже 320 А (Eaton NZM3). Не хорошо, не обеспечивается селективность срабатывания автоматов. Для этого я поднял уставку до 400 А».

Инспектор: — «Покажите нормативный документ или дайте на него ссылку, где сказано, что в сетях до 1 кВ уставка АВ на питающем фидере от ТП к ВРУ должна быть больше уставки вводного автомата на вводе этого ВРУ? Я считаю, что они могут быть одинаковыми, а отключится первым тот, у которого чувствительность выше. Докажите обратное».

— «Я руководствуюсь, в первую очередь, логикой. Разрешенную мощности мы не превышаем. При этом если в результате перегрузки питающей линии отключится аппарат защиты в голове линии (на фидере в ТП), то обслуживающему персоналу придется идти в КТП для его включения. А если обслуживаем занимается сторонняя организация, то время на включение значительно увеличивается».

-«Не вижу проблемы. Докажите обратное. Еще вопросы есть?» — таков был ответ инспектора.

И я не смог подтвердить требование селективности ничем, кроме потери времени на включение автомата в КТП.

Какие у вас соображения на этот счет? Где прописаны такие требования?

А еще он сказал, что для вновь проектируемых объектов в РБ коэффициент мощности должен быть не ниже 0,9. А где про это написано, я у него не спросил.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector