Com-ip.ru

КОМ IP
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип гашения электрической дуги выключателями

Электромагнитный выключатель

Электромагни́тный выключа́тель — высоковольтный коммутационный аппарат, в котором гашение электрической дуги производится взаимодействием плазмы дуги с магнитным полем (т. н. магнитным дутьём) в дугогасительных камерах с узкими щелями (прямыми или извилистыми) или с камерами с дугогасительными решётками.

Принцип магнитного гашения дуги широко применяется в низковольтной коммутационной аппаратуре (автоматических выключателях, контакторах).

Содержание

  • 1 Устройство
  • 2 Принцип действия
  • 3 Преимущества
  • 4 Недостатки
  • 5 Применение
  • 6 Изготовители
  • 7 Литература
  • 8 Примечания

Устройство [ править | править код ]

Электромагнитный выключатель состоит из рамы, на которой установлены на изоляторах три полюса, связанные с включающим валом диэлектрическими тягами. Каждый полюс состоит из подвижных и неподвижных контактов, на каждом из них установлена пара основных и дугогасительных контактов из металлокерамики. Сверху контактов установлена дугогасительная камера из дугостойкого материала (асбест) и керамических или стальных, покрытых слоем меди, дугогасительных пластин. Снаружи камеру охватывает П-образный магнитопровод, на которую надета дугогасительная катушка, подключаемая с одной стороны к силовой шине с неподвижным контактом, а другой — к дугогасительному рогу, располагающемуся внутри дугогасительной камеры перед пакетом из пластинами решётки; второй дугогасительный рог располагается также внутри камеры с другой стороны дугогасительной решётки и подключается к второму выводу выключателя. Для лучшего гашения дуги при коммутации малых токов может быть предусмотрено в конструкции устройство автопневматического поддува (состоящего из поршня и цилиндра, механически соединённых с силовыми контактами). Кроме того выключатель укомплектовывается приводом (обычно пружинно-моторного типа), который по сигналам во вторичной цепи производит коммутацию силовых контактов посредством вращением включающего вала.

Принцип действия [ править | править код ]

При подаче сигнала на отключение происходит поворот вала и движение через тяги передаётся подвижным контактам, при этом сначала размыкаются основные контакты, затем — дугогасительные. Образующаяся электрическая дуга под действием собственных электродинамических сил движется вверх по дугогасительным рогам, при этом выдавливаясь в сторону решётки, кроме того дуга замыкает цепь дугогасительной катушки (через дугогасительные рога), магнитное поле которой ещё сильнее ускоряет дугу (т. н. «магнитное дутьё»). Попадая в решётку дуга разбивается на множество малых дуг (между пластинами решётки), которые начинают двигаться вверх независимо и быстро гаснут (за счёт отдачи тепла пластинам и деионизации; за счёт прикатодного падения напряжения увеличивается напряжённость электрического поля в дуги — см. подробнее Дугогасительная камера). Вверху дугогасительной камеры может располагаться пластины второй решётки, (т. н. «пламегасительная решётка»), для исключения выхода ионизированной плазмы вне аппарата и перекрытия ей токоведущих частей. При малых токах отключения электродинамические силы могут быть малы и не способны выдавить дугу в решётку и для этих целей иногда применяется автопневматический поддув в виде струи сжатого воздуха, которая осуществляет охлаждение и деионизацию электрической дуги.

Преимущества [ править | править код ]

Полная взрыво- и пожаробезопасность (в отличие, например, от масляных выключателей), не используется сложная пневматическая система, малый износ дугогасительных контактов, возможность использования в установках с частыми коммутациями, относительно высокая отключающая способность.

Недостатки [ править | править код ]

Сложность дугогасительной камеры с системой магнитного дутья, ограниченный диапазон номинальных напряжений (до 15-20 кВ), ограниченная пригодность для наружной установки [1] .

Применение [ править | править код ]

Электромагнитные выключатели выпускаются в основном для использования в сетях 6—10 кВ с номинальным током до 2000 А (с коммутируемой мощностью до 400—200 МВА соответственно) для внутренней установки навесного и выкатного типа — для ячеек КРУ (комплектных распредустройств).

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Как происходит гашение электрической дуги в автоматических выключателях

Виды дугогасительных устройств в автоматических выключателях

Автоматический выключатель должен обеспечивать гашение дуги при всех вероятных режимах сети.

В автоматических выключателях отыскали применение два выполнения дугогасительных устройств — полузакрытое и открытое.

В полузакрытом выполнении автоматический выключатель закрыт кожухом, имеющим отверстия для выхода жарких газов. Объем кожуха делается довольно огромным, чтоб избежать возникновения снутри кожуха огромных лишних давлений. При полузакрытом выполнении зона выброса жарких и ионизированных газов составляет обычно несколько см от выхлопных щелей. Такое конструктивное решение применяется в автоматических
выключателях, монтируемых рядом с другими аппаратами, в распределительных устройствах, в автоматах с ручным управлением. Предельный ток
автоматического выключателя не превосходит 50 кА.

При токах 100 кА и выше в автоматических выключателях используются камеры открытого выполнения с большой зоной выброса. Полузакрытое выполнение применяется, обычно, в установочных и универсальных
автоматах, открытое — в быстродействующих и автоматах на огромные предельные токи (100 кА и выше) либо огромные напряжения (выше 1000В).

Читать еще:  Шнур с выключателем makel

Методы гашения электронной дуги в установочных и
универсальных автоматических выключателях

В автоматических выключателях массового внедрения (установочных и универсальных) обширное применение получила деионная дугогасительная решетка из железных пластинок. Так как
автоматические выключатели должны работать как на переменном, так и на неизменном токе, число пластинок выбирается из условия отключения цепи неизменного тока. На каждую пару пластинок должно приходиться напряжение наименее 25 В.

В цепях переменного тока с напряжением 660 В такие дугогасительные устройства обеспечивают гашение дуги с током до 50 кА. На неизменном токе эти устройства работают при напряжении до 440 В и отключают токи до 55 кА. В дугогасительных устройствах со железными пластинами гашение происходит расслабленно, с наименьшим выбросом ионизированных и нагретых газов из дугогасительного устройства.

Виды дугогасительных камер автоматических выключателей

При огромных токах используются лабиринтно-щелевые камеры и камеры с прямой продольной щелью. Втягивание дуги в щель осуществляется магнитным дутьем с катушкой тока.

Продольно-щелевая камера может иметь несколько параллельных щелей постоянного сечения. Это уменьшает аэродинамическое сопротивление камеры и упрощает вхождение дуги с огромным током в щели. Сначала дуга разбивается на ряд параллельных волокон. Но потом из всех параллельных веток остается только одна, в какой совсем происходит гашение. Стены камеры и перегородки делаются из асбоцемента.

В лабиринтно-щелевой камере постепенное вхождение дуги в извилистую щель не делает высочайшего аэродинамического сопротивления при огромных токах. Узенькая щель увеличивает градиент напряжения в дуге, что уменьшает нужную длину дуги при гашении. Извилистая форма щели уменьшает габариты автомата.

В лабиринтно-щелевой камере осуществляется насыщенное остывание дуги стенка-ми камеры. Ввиду того что дуга дает огромное количество тепла стенам щели, материал камеры должен владеть высочайшей теплопроводимостью и температурой плавления.

Для того чтоб не происходило разрушение камеры от высочайшей температуры, нужно, чтоб дуга двигалась безпрерывно с большой скоростью. Это просит сотворения массивного магнитного поля на всем пути движения дуги в щели. При недостаточной скорости движения происходит разрушение дугогасительного устройства.

В качестве материала для камеры применяется кордиерит. Газообразующие материалы типа фибры, органического стекла не используются из-за увеличения аэродинамического сопротивления.

В текущее время с целью упрощения конструкции (отказ от массивных и сложных систем магнитного дутья) вновь ворачиваются к идее деионной металлической решетки. Железные пластинки, имеющие паз для дугогасительных контактов делают усилие, перемещающее дугу. В отличие от обыкновенной решетки дуга соприкасается с изолированными железными пластинами: гашение происходит так же, как в камере с поперечными изоляционными перегородками, но при отсутствии специальной магнитной системы, двигающей дугу.

Воздействие электронной дуги на контакты автоматических
выключателей

Более ответственной частью токоведущей цепи автоматических
выключателей являются контакты. При номинальных токах до 200 А в автоматических
выключателях применяется одна пара контактов, которые для роста дугостойкости могут быть облицованы металлокерамикой.

Огромные номинальные токи требуют внедрения в автоматических
выключателях двухступенчатого контакта типа перекатывающегося моста либо пары главных и дугогасительных
контактов. Главные контакты автоматических выключателей облицовываются или серебром, или металлокерамикой (серебро, никель, графит). Дугогасительный недвижный контакт покрывается металлокерамикой СВ-50 (серебро, вольфрам), подвижный СН-29ГЗ.
В автоматичекских выключателях применяется металлокерамика и других марок.

В автоматических выключатлелях на огромные номинальные токи применяется включение нескольких параллельных пар главных контактов.

В быстродействующих автоматических выключателях с целью уменьшения собственного времени используются только торцевые контакты, имеющие малый провал. Контакты делаются из меди и поверхности касания подвергаются серебрению. В связи с ростом номинального тока и относительно высочайшим сопротивлением контактов
автоматических выключателей, в текущее время, проводятся работы по искусственному остыванию контактов при помощи воды. Такое решение задачки позволяет сохранить малую массу и быстродействие
автоматического выключателя и прирастить долгий ток с 2500 до 10 000 А.

Устойчивость контактов автоматических выключателей при
включении на куцее замыкание

Устойчивость контактов автоматических выключателей при включении на куцее замыкание находится в зависимости от скорости нарастания давления в контактах. При амплитуде включаемого тока более 30 — 40 кА используют автоматы моментного деяния, у каких скорость движения контактов и нажатие в их не зависят от скорости перемещения включающей ручки.

В универсальных автоматических выключателях, работающих селективно, создается преднамеренная выдержка времени при протекании тока недлинного замыкания.

Во избежание сваривания контактов автоматического выключателя непременно применяется электродинамическая компенсация. При протекании тока в дугогасительном контуре на проводник, несущий недвижный дугогасительный контакт
автоматического выключатлеля, действует электродинамическая сила, увеличивающая нажатие контактов.

Способы гашения электрической дуги

При разрыве электрической цепи, находящейся под током, между контактами возникает дуговой разряд, представляющий собой поток заряженных частиц — электронов и ионов, перемещающихся с большой скоростью между контактами. Высокая температура дуги (около 10 000° С в стволе дуги и до 2000-3000° С на ее поверхности) может привести к плавлению металлов и разрушению контактов, а ионизация окружающей среды — к пробою и перекрытию изоляции. Поэтому необходимо быстро прервать ток, который после размыкания контактов идет в цепи через электрическую дугу.

Читать еще:  Выключатель кнопочный 16а 250в

В тяговых аппаратах применяют следующие способы гашения дуги: механическое, роговое и электромагнитное.

Механическое гашение электрической дуги осуществляется удлинением ее посредством увеличения расстояния между контактами. Этот способ нашел применение в аппаратах с ручным приводом, например в выключателях управления, контроллерах управления, а также реле и др. Недостатком этого способа является малая скорость гашения дуги, большая длина дуги, повышенное подгорание и оплавление контактов.

Роговое гашение электрической дуги происходит при ее удлинении под действием силы воздушной тяги, появляющейся в результате поднимания нагретого дугой воздуха вверх и электродинамических усилий между элементами дуги и рогами, направленных также снизу вверх. Под действием этих сил электрическая дуга быстро перемещается кверху, увеличиваясь по длине, и разрывается. Роговое гашение электрической дуги используют в роговых разрядниках и в дугогасящих устройствах тяговой электроаппаратуры.

Электромагнитное гашение дуги вызывается взаимодействием магнитного потока, создаваемого специальной дугогасительной катушкой, и тока электрической дуги.

При конструировании дугогасительных устройств обычно одновременно принимают несколько способов гашения дуги. Дугогасительное устройство контактора с электромагнитным (основным) и роговым (вспомогательным) гашением (рис. 32) состоит из катушки 5, камеры 1 с полюсными наконечниками 2 и рогов Зкб. Дугогасительную катушку выполняют из шинной меди, намотанной на ребро, и укрепляют ее на сердечнике 4. В аппаратах, осуществляющих коммутацию цепей со сравнительно небольшим током, катушку наматывают из изолированного медного провода круглого сечения. Дугогасительную катушку устанавливают непосредственно за верхним дугогасительным рогом и включают последовательно с контактами. Дугогасительную камеру выполняют из асбоцементных листов, пропитанных льняным маслом для улучшения изоляционных свойств, или из специальной дугостойкой керамики. Камеру закрепляют в полюсных наконечниках из листовой стали. Полюсные наконечники, соединяясь с сердечником дугогасительной катушки, образуют магнитопровод, благодаря которому сокращается рассеивание магнитного поля и магнитные потоки сосредоточиваются в дугогасящем пространстве камеры.

В электрической цепи аппарата ток идет в следующем направлении: от провода I, через дугогасительную катушку, неподвижный 7 и подвижный 8 контакты к проводу //. При данном направлении тока в дугогасительной катушке (против часовой стрелки) направление магнитного поля внутри камеры указано стрелкой

(см. рис. 32). Одновременно вокруг дуги образуется магнитное поле, направленное против часовой стрелки. Магнитное поле дуги, взаимодействуя с магнитным полем дугогасительной катушки, создает силу заставляющую дугу перемещаться внутрь камеры. Направление вилы В определяется по правилу левой руки. Дуга, перемещаясь по рогам внутрь дугогасительной камеры, все более удлиняется, охлаждается о стенки камеры, сопротивление ее резко возрастает и дуга гаснет.

Изменение направления тока в электрической цепи приводит к изменению направления линий магнитной индукции вокруг электрической дуги. Одновременно изменяется направление тока в дугогасительной катушке, последовательно соединенной с цепью, а это вызывает изменение направления магнитных линий поля гашения. Таким образом, направление выдувания электрической дуги остается прежним — внутрь камеры.

Сила взаимодействия между магнитным потоком дугогасящего устройства при однородном поле гашения, перпендикулярно направленном к электрической дуге (при а=90°),

^ = ?/дЛ (12)

где /д — длина дуги, см;

В — магнитная индукция, Тл; 1 — отключаемый ток, А,

В соответствии с законом Ома для магнитной цепи

если пренебречь магнитным сопротивлением стали и учитывать только расстояние между полюсами, сопротивление

где /да — намагничивающая сила катушки дугогашения, А, создающая магнитный поток Ф в пространстве гашения электрической дуги;

б — расстояние между полюсами магнитной системы, см: а — площадь поперечного сечения поля гашения, см 2 ; ро=0,4я10- 8 — магнитная проницаемость воздуха, Гн/см. Подставляя данные в уравнение (12), получим

Из уравнения (15) следует, что сила, действующая на дугу, пропорциональна квадрату отключаемого тока. Поэтому при последовательном включении дугогасительной катушки с контактами аппарата увеличение тока в электрической цепи повысит эффективность гашения дуги при выключении дуги.

Электрооборудование трамваев и троллейбусов

  • Общие сведения и технические характеристики электрических машин постоянного тока
  • Характеристики тяговых двигателей
  • Конструкция электродвигателей
  • Вспомогательные электрические машины на напряжение 550 В
  • Вспомогательные электрические машины на напряжение 24 и 12 В
  • Генераторы собственных нужд
  • Обслуживание электрических машин
  • Характеристики токоприемников
  • Конструкция токоприемников и их обслуживание
  • Пускотормозные реостаты
  • Регулировочные реостаты и индуктивные шунты
  • Контактные соединения, контактные материалы
  • Способы гашения электрической дуги
  • Расчет обмоток электромагнита
  • Электромагнитные контакторы
  • Устройство и компоновка контакторных панелей
  • Групповые аппараты
  • Контроллеры косвенного управления подвижным составом
  • Групповые реостатные контроллеры
  • Ускоритель вагона Т-3
  • Реверсивные переключатели
  • Отключатели тяговых двигателей
  • Реле автоматического пуска и торможения
  • Реле управления
  • Аппараты токовой защиты
  • Аппараты защиты по напряжению
  • Аппараты защиты от атмосферных перенапряжений
  • Защита радиоприема от помех, вызываемых электрическим оборудованием подвижного состава
  • Характеристика систем управления
  • Регулирование напряжения на тяговых двигателях при реостатном пуске
  • Регулирование возбуждения тяговых двигателей при пуске
  • Электрическое торможение
  • Тормозные характеристики и схемы реостатного торможения
  • Электрическая схема троллейбуса 9Тр
  • Электрическая схема троллейбуса ЗиУ-9
  • Электрическая схема вагона РВЗ-6М-2
  • Электрическая схема вагона КТМ-5М-3
  • Электрическая схема вагона Т-3
  • Импульсное управление на электрическом подвижном составе
  • Импульсное регулирование напряжения на тяговых двигателях при пуске
  • Импульсное регулирование напряжения на тяговых двигателях при торможении
  • Тиристорно-импульсное регулирование возбуждения тяговых двигателей
  • Сглаживающие устройства в системах с тиристорно-импульсным управлением
  • Схемы тиристорных прерывателей
  • Защита силовых полупроводниковых приборов в тиристорных регуляторах
  • Принципы построения схем управления тиристорных регуляторов
  • Конструкция электрооборудования
  • Электрические схемы вагона РВЗ-7 с тиристорно-импульсным управлением
  • Электрическая схема электронного блока управления вагона РВЗ-7
  • Электрические цепи напряжением 550 В
  • Аккумуляторные батареи
  • Реле-регуляторы
  • Схемы вспомогательных цепей напряжением 24 и 12 В троллейбусов и трамваев
  • Список литературы
Читать еще:  Выключатель коробки отбора мощности камаз
Электродинамический тормоз электровозов ЧС2 Т и ЧС200

Рассмотрены устройство и работа основного электронного оборудования, применяемого в электродинамическом (реостатном) тормозе системы «Шкода». Применительно к электродинамическому тормозу электровозов ЧС2 Т и его модификации на скоростном электровозе ЧС200

Дугогасительные камеры

Дугогасительные камеры — это специальные устройства, применяющиеся в системах дугогашения в различных электрических коммутационных аппаратах для предотвращения горения и быстрого гашения электрической дуги.

Устройство

Дугогасительная камера представляет собой набор металлических (обычно железных) пластин определенной формы, покрытых медью или хромом (для улучшения проводимости и предотвращения окисления), закрепленных на определенном расстоянии друг от друга, между двумя пластинами выполненными из диэлектрика (электрокартона), или при большой предполагаемой мощности гасимой дуги, в камере из асбоцемента. В дугогасительных камерах повышенной мощности, применяются постоянные магниты или электромагниты, которые улучшают втягивание электрической дуги (магнитное дутьё).

Принцип действия

Дугогасительная камера сконструирована таким образом, что электрическая дуга, образующаяся при размыкании контактов коммутационных аппаратов, разгораясь, начинает следовать по пути наименьшего сопротивления, втягиваться в прорези металлических пластин дугогасительной камеры и гореть между пластинами по всей длине камеры. Втянувшись в камеру электрическая дуга удлиняется, режется пластинами камеры на несколько более маленьких по длине дуг, за счет этого быстрее деионизируется, охлаждается и гаснет. В дугогасительных камерах с магнитным дутьём, выполненным на постоянных магнитах или электромагнитах, дуга быстрее и лучше втягивается в камеру за счет воздействия на неё магнитного поля, образованного этими магнитами.

Применение

Дугогасительные камеры применяются в автоматических воздушных выключателях, магнитных пускателях (начиная со второй величины), контакторах, выключателях нагрузки и рубильниках, конструкция которых предусматривает наличие дугогасящих устройств.

Wikimedia Foundation . 2010 .

  • Дуговая координата
  • Дудаков

Полезное

Смотреть что такое «Дугогасительные камеры» в других словарях:

Дугогасительная камера — Дугогасительные камеры это специальные устройства, применяющиеся в системах дугогашения в различных электрических коммутационных аппаратах для предотвращения горения и быстрого гашения электрической дуги. Устройство Дугогасительная камера… … Википедия

Масляный выключатель — электрический выключатель переменного тока высокого напряжения, главные контакты которого помещаются в объёме, заполненном минеральным (трансформаторным) маслом. При отключении электрической цепи между контактами выключателя возникает… … Большая советская энциклопедия

Масляный выключатель — Баковый выключатель МКП 110 на тяговой подстанции, Тольятти … Википедия

Электромагнитный выключатель — Выключатель электрический, служащий для отключения высоковольтных цепей под нагрузкой в нормальных и вынужденных режимах работы; принципиально отличается от выключателей других систем тем, что гашение электрической дуги, возникающей между … Большая советская энциклопедия

Электрокомплекс — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Минусинский Электрокомплекс первое в СССР предприятие по серийному вы … Википедия

испытание — 3.10 испытание: Техническая операция, заключающаяся в определении одной или нескольких характеристик данной продукции, процесса или услуги в соответствии с установленной процедурой. Источник: ГОСТ Р 51000.4 2008: Общие требования к аккредитации… … Словарь-справочник терминов нормативно-технической документации

Всероссийский электротехнический институт — Федеральное государственное унитарное предприятие Всероссийский электротехнический институт им. В.И. Ленина (ФГУП ВЭИ) Основан 1921 Сотрудников ок 1300 чел Расположение Москва … Википедия

дугогасительная камера с магнитным дутьем — Дугогасительная камера с дутьем, в которой для перемещения дуги имеемся катушка или постоянный магнит, создающие магнитное поле в зоне дуги. [ГОСТ 17703 72] Параллельные тексты EN RU Miniature circuit breakers series S280 UC comply with Standard… … Справочник технического переводчика

Испытание трансформаторного масла выключателей. — 12. Испытание трансформаторного масла выключателей. У баковых выключателей всех классов напряжений и малообъемных выключателей 110 кВ и выше испытание масла производится до и после заливки масла в выключатели. У малообъемных выключателей до 35 кВ … Словарь-справочник терминов нормативно-технической документации

ПУЭ: Правила устройства электроустановок. Издание 6 — Терминология ПУЭ: Правила устройства электроустановок. Издание 6: 2. Анализ масла перед включением оборудования. Масло, отбираемое из оборудования перед его включением под напряжением после монтажа, подвергается сокращенному анализу в объеме,… … Словарь-справочник терминов нормативно-технической документации

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector