Com-ip.ru

КОМ IP
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Рассчитать автоматический выключатель по току короткого замыкания

Электротехнический расчет завода металлоконструкций и деталей (стр. 7 из 19)

Принимается к установке автомат АВМ10 с

Ток срабатывания электромагнитного расцепителя:

Принимается ток срабатывания расцепителя —

Ток срабатывания расцепителя в зоне перегрузки:

Выбор линейного автоматического выключателя

Ток срабатывания электромагнитного расцепителя:

Полученное значение округляется до ближайшего большего стандартного значения. Принимается к установке автоматический выключатель типа АВМ-4С (табл. 30.6 [2]). Номинальный ток расцепителя – 400 А; уставка тока срабатывания расцепителя –

Выбор кабеля питающего шинопровод

Выбор кабеля на напряжение до 1 кВ осуществляется по длительно допустимому току.

Расчетный ток в кабеле:

По величине расчетного тока для питания шинопровода выбирается два кабеля марки АВВГ 3×95+1×70 мм 2 (алюминиевые жилы, поливинилхлоридная изоляция, оболочка из поливинилхлорида, без защитного покрова) для которого

Распределение электроэнергии к отдельным электроприемникам от силовых шкафов и шинопровода осуществляется проводом марки АПВ (алюминиевые жилы, поливинилхлоридная изоляция).

Выбор распределительного шинопровода

Распределительный шинопровод выбирается по расчетному току из условия:

По табл. 7.4 [4] выбирается распределительный шинопровод типа ШРА73УЗ. Длина шинопровода – 60 м. Номинальный ток шинопровода –

Технические характеристики шинопровода приводятся в табл. 1.14.

Таблица 1.14. Технические характеристики комплектного распределительного шинопровода

ХарактеристикиТип шинопровода
ШРА73УЗ
Номинальный ток, А400
Электродинамическая стойкость, кА25
Термическая стойкость, кА10
Сопротивление на фазу, Ом/кмактивноеиндуктивное
0,15
0,17
Линейная потеря напряжения, В на длине 100 м при номинальном токе, cosφ=0,8 и равномерно распределенной нагрузке8
Поперечное сечение, мм284×95
Степень защиты1Р32
Типы коммутационно-защитной аппаратуры, установленной в ответвительных коробках:предохранителиавтоматические выключатели (ток, А)
ПН2–100
А3710 (160), А3720 (250),А3120 (100), АЕ2050 (100)

Проверка шинопровода по потере напряжения:

Выбор автоматического выключателя для защиты ЭП№14

Номинальный ток ЭП №14:

Уставка тока срабатывания автоматического выключателя:

Принимается к установке автоматический выключатель типа А3710 (табл. 30.6 [2]). Номинальный ток автоматического выключателя –

Выбор кабеля питающего ЭП №14

По значению номинального тока ЭП №14 принимается кабель марки АВВГ 3х70+1х50 мм 2 с

Выбор магнитного пускателя для ЭП №14

По номинальному току ЭП №14 (

Принимается тепловое реле типа ТРН-160 с уставкой регулировочного винта теплового реле в положение -20%.

1.9 Расчет токов короткого замыкания

При проектировании систем электроснабжения учитывают не только нормальные, продолжительные режимы работы электроустановок, но и аварийные режимы их. Одним из аварийных режимов является короткое замыкание.

Причинами коротких замыканий могут быть: механические повреждения изоляции – проколы и разрушение кабелей при земляных работах; поломка фарфоровых изоляторов; износ изоляции; увлажнение изоляции; перекрытие между фазами и т.д.

Последствиями коротких замыканий являются резкое увеличение тока в короткозамкнутой цепи и снижение напряжения в отдельных точках системы. Увеличение тока в ветвях электроустановка, примыкающих к месту кз, приводит к значительным механическим воздействиям на токоведущие части и изоляторы, на обмотки электрических машин. Прохождение больших токов вызывает повышенный нагрев токоведущих частей и изоляции, что может привести к пожару в распределительных устройствах, в кабельных сетях и других элементах электроснабжения.

При расчете токов короткого замыкания принимаются следующие допущения:

– трехфазная система симметрична;

– магнитные системы не насыщены;

– отсутствуют качания роторов синхронных машин;

– короткое замыкание считается металлическим.

Для упрощения расчетов для каждой электрической ступени в расчетной схеме указывается вместо ее действительного напряжения среднее номинальное напряжение. Для расчета токов трехфазного короткого замыкания в сетях и установках выше 1 кВ составляется расчетная схема для рассматриваемой системы электроснабжения. Расчет токов короткого замыкания в сетях выше 1 кВ имеет ряд особенностей:

– активные сопротивления элементов системы электроснабжения при определении тока короткого замыкания не учитываются;

Измерение тока КЗ в домашних условиях

Сегодняшняя статья – продолжение моей статьи под интригующим названием «Ток короткого замыкания: размер имеет значение». На этот раз расскажу про то, как можно измерить ток КЗ при помощи измерительных приборов. Я проведу натурный эксперимент по измерению тока КЗ у себя в квартире и на даче. Расскажу не только про способы с применением профессиональной техники стоимостью десятки тысяч рублей, но и как это сделать при помощи обычного любительского мультиметра.

Что влияет на значение тока короткого замыкания

При эксплуатации электросети важно мониторить параметры её качества, основной их которых – напряжение. Об этом я писал в одной из прошлых статей. Как известно, чтобы узнать напряжение, нужен вольтметр. Но и без него можно легко узнать, что с напряжением что-то не так – например, по тусклому свечению лампочек (в случае низкого напряжения) либо по перегоранию электроприборов при повышенном напряжении.

С током короткого замыкания не всё так просто – его значение может «гулять», и это не будет особо заметно. А проявится это в самый неподходящий момент – например, когда при замыкании электропроводки не сработает автоматический выключатель. Поэтому рекомендуется проверять (рассчитывать и/или измерять) ток КЗ периодически – перед проектированием электрощита, после ввода электропроводки в эксплуатацию, а затем – раз в год.

В любом измерении тока КЗ нужно понимать, что измеренный или расчетный ток КЗ относится только к конкретной точке электросети, применительно к которой производится измерение и расчет. Невозможно предугадать, в каком месте состоится замыкание, поэтому обычно измерения проводят в двух местах – в электрощите и самой удаленной от него точке.

  • Замена питающего трансформатора на ТП;
  • Замена любого участка электрической сети, в том числе высоковольтного;
  • Изменение состояния защитного и коммутационного оборудования (рубильники, автоматические выключатели и т.д.);
  • Увеличение или уменьшение напряжения в точке КЗ, которое может происходить по нескольким причинам;
  • Ухудшение или улучшение контакта (изменение переходного сопротивления) в любой точке сети – от клемм питающего трансформатора до клемм нашей розетки;
  • Ухудшение контакта (вплоть до полного обрыва) нейтрального проводника.

Косвенно о низком токе КЗ можно сказать и без приборов, опираясь на такие факты:

  • Удаленность от трансформаторной подстанции;
  • Низкая мощность трансформатора;
  • Нестабильность напряжения в зависимости от времени суток или при включении мощных электроприборов.
Читать еще:  Выключатель автомат compact ns160n

Чем плох и хорош низкий и высокий ток КЗ, я подробно рассмотрел в первой части статьи (ссылку давал в начале).

Зачем нужно знать ток КЗ?

Ток КЗ – это максимально возможный ток в определенной точке сети. Этот параметр определяет качество электропроводки в целом. Зная значение ожидаемого тока короткого замыкания, можно:

  • Оценить способность установленных автоматических выключателей обеспечить защиту при коротком замыкании;
  • Оценить селективность разных уровней защиты;
  • Проверить сопротивление заземляющего устройства (качество контура системы заземления).

Подробнее вопросы селективности и выбора автоматических выключателей будут рассмотрены в следующей статье.

Как измеряется ток КЗ при помощи приборов

Есть старый, «дедовский» способ измерения тока КЗ – с использованием понижающего трансформатора, амперметра и вольтметра. Далее нужен расчет по формулам.

Есть и другой, экстремальный способ – подключают амперметр и вручную создают короткое замыкание, замыкая цепь. Это не наш метод – мало того, что он неточен, но при таком «измерении» электросеть подвергается экстремальной нагрузке. К тому же не факт, что защита выбрана правильно, поэтому можно просто-напросто сжечь электропроводку.

Я в школьные годы решил как-то проверить «ток в розетке» этим методом, и воткнул свой новенький тестер ТЛ-4М в режиме амперметра (∼3А) в розетку. Результат – в доме выбило «пробки», в тестере сгорел шунт, а я получил бесценный опыт.

Сейчас большинство приборов вычисляют полное сопротивление петли «фаза – ноль», а затем автоматически пересчитывают полученное значение в ток КЗ. Делается это методом падения напряжения, подключая к точке измерения нагрузку (резистор) известного сопротивления. Номинал резистора обычно равен 10 Ом, время измерения – 30 мс (полтора периода напряжения). Такое измерение не перегружает сеть, и в то же время обеспечивает максимальную точность, не вызывая срабатывания автоматических выключателей – тепловой расцепитель за такое время не успеет сработать, а электромагнитному не хватит величины испытательного тока.

При этом ток КЗ измеряется во всех вариантах, где он может возникнуть: «фаза – нейтраль», «фаза – защитное заземление», «фаза – фаза».

Чтобы правильно провести измерения тока КЗ при помощи приборов, нужно обладать достаточной квалификацией, и внимательно изучить инструкцию к прибору. Например, необходимо учитывать сопротивление измерительных проводов. Важен и тот факт, что полученное значение тока КЗ нужно пересчитать под реальное напряжение в сети.

Измерение тока КЗ. Выводим формулы

Итак, самый распространенный метод измерения тока КЗ – метод падения напряжения, который мы сейчас и проверим на практике. Этот метод – косвенный, то есть итоговое значение получается путем измерения некоторых параметров с дальнейшими расчетами по формулам. Эти формулы мы сейчас и получим. Конечно, не без помощи нашего немецкого коллеги, о котором мы знаем из уроков физики.

Для начала – несколько пояснений. Предлагаю условиться, что розетка – это источник напряжения, обладающий внутренним сопротивлением Ri. Это сопротивление фактически является сопротивлением цепи «фаза-ноль». Также для простоты изложения условимся не учитывать реактивную составляющую, т.е. принимаем cos φ = 1. Таким образом, получаем такую схему, к которой можем применить закон Ома для полной цепи:

Схема для пояснения закона Ома для полной цепи

Иными словами, получаем резистивный делитель напряжения, напряжение на выходе которого всегда ниже, чем на входе. Сопротивление Ri «олицетворяет» собой все сопротивления, которые встречаются на пути электроэнергии – от сопротивления обмоток трансформатора на подстанции (ТП) до переходного сопротивления клемм розетки, через которые подключается нагрузка с сопротивлением .

Напряжение Uхх – это напряжение холостого хода, которое будет действовать на вторичной обмотке трансформатора, когда нагрузка не подключена. – напряжение на нагрузке, которое всегда меньше Uхх. В расчетах будет фигурировать и номинальное напряжение Uном, которое обычно бывает равным 220 или 230 В.

Iкз=Uхх/Ri (0)

Напряжение холостого хода легко узнать – оно измеряется вольтметром, когда вся нагрузка на данной линии отключена.

Напряжение холостого хода Uхх – это наибольшее значение напряжения, которое в принципе может быть в розетке. Конечно, за исключением аварийных режимов типа обрыва нуля.

Теперь дело за малым – определить внутреннее сопротивление источника (сопротивление петли «фаза-ноль») Ri. Это можно сделать тремя способами, про которые я сейчас расскажу.

1. Расчет петли «фаза-ноль» через ток нагрузки

Сопротивление Ri теоретически не зависит от приложенного к нему напряжения. Поэтому, мы можем измерить ток нагрузки Iн и напряжение на Ri не в момент короткого замыкания, а при подключении нагрузки с ненулевым сопротивлением. А затем применить закон Ома:

Ri=(Uхх-Uн)/Iн (1)

Ток нагрузки можно измерить двумя способами – при помощи амперметра (прямого включения или через трансформатор тока) и применяя токоизмерительные клещи. Амперметр дает более точное измерение, клещи – более оперативное. Я использовал клещи, но можно применить и амперметр, встроенный в мультиметр.

2. Расчет петли «фаза-ноль» через сопротивление нагрузки

Вторую формулу можно получить, составив уравнение пропорциональности между сопротивлениями Ri и Rн, и напряжениями на них. Получаем:

Ri=(Uхх-Uн)·Rн/Uн (2)

Чтобы использовать формулу (2), нужно предварительно измерить сопротивление нагрузки при помощи омметра. Поскольку мы условились, что реактивную составляющую мы не учитываем, для чистоты эксперимента нагрузка обязательно должна быть активной. Я использовал масляные обогреватели – их сопротивление чисто активное, и не зависит от напряжения и наличия питания. Как вариант, в качестве нагрузочного сопротивления можно использовать утюг или электрочайник.

3. Расчет петли «фаза-ноль» через мощность нагрузки

Третий способ – самый простой, но его можно применить только тогда, когда мы точно знаем мощность нагрузки.

Составляющие закона Ома зависят от номинальной мощности нагрузки Рном, поэтому путем нехитрых манипуляций получаем следующую формулу:

Ri=(Uном(Uхх-Uн))/Pном (3)

Чтобы проводить расчеты по формуле (3), нужно знать номинальное напряжение Uном (220 или 230 В) и мощность нагрузки. Обычно их приводит производитель. Вот фото шильдика нагревателя с Uном = 230 В и Рном = 1500 Вт:

Читать еще:  Наконечник переходник для автоматического выключателя

Шильдик нагревателя мощностью 1500 Вт

Забегая вперед, скажу, что этот способ – наименее точный, поскольку производитель может писать любые данные, преследуя маркетинговые или другие цели.

Теперь, рассчитав значение Ri наиболее удобным способом по формулам (1), (2) или (3), можно найти ток короткого замыкания по формуле (0) даже в домашних условиях. Чем мы наконец-то и займемся.

Измерение тока КЗ в квартире

Трансформаторная подстанция, которая питает мой дом, находится на расстоянии около 30 м до моего подъезда, плюс подъем на 5-й этаж и разводка по квартире. То есть, длина питающей линии сравнительно невелика. Мощность трансформатора на ТП – 400 кВА.

Результаты измерений, в которых участвовал обогреватель с паспортной мощностью 1500 Вт, приведены в таблице:

Измерение тока кз в квартире, исходные и измеренные данные

Далее, используя формулы (1), (2) и (3), я рассчитал сопротивление петли фаза-ноль Ri в трех вариантах. Соответствующие токи Iкз посчитаны по формуле (0):

Результаты расчетов тока короткого замыкания в квартире тремя способами по измеренным данным

Измерения я проводил в самой дальней от электрощита розетке, благо она сдвоенная, поэтому напряжение на нагрузке измерять было легко, без использования тройников и переносок. Как видно, три формулы дали три разных результата. Это нормально, поскольку методики измерения и погрешности разные. В бытовых условиях при использовании неповеренных средств измерений погрешность оценить проблематично. Но оценить значение тока КЗ можно вполне.

Из трех значений правильно выбрать наихудшее – наименьший ток КЗ составил 166 А. Этот расчет я делал исходя из измерения сопротивления нагрузки омметром. Считаю этот способ наиболее точным.

Что означает это значение? Это означает, что я правильно сделал, когда поменял все квартирные автоматы на 25 А, которые стояли от застройщика с 1979 года, на автоматы с номинальным током 16А. Обладая характеристикой отключения «С», они с некоторой вероятностью отключат свою линию при токе КЗ от 80 до 159 А, а при сверхтоке 160 А и более вероятность отключения равна 100%. Поэтому ток КЗ 166 А можно считать в данном случае достаточным.

Как определить, при каких токах конкретный автомат может отключиться, а при каких должен, а писал не раз, например, тут.

Откровенно говоря, я ожидал большего значения тока КЗ. Ведь по правилам (ПТЭЭП, п.28.4) должен быть запас 10%, а для моего автоматического выключателя это 176 А. Я подробно рассказывал об этом в предыдущей статье. Можно успокоиться тем, что другие методы измерения дали вполне приемлемые результаты (176 и 189 А).

Измерение тока КЗ в дачном домике

Не смотря на то, что недавно домик подключили от воздушной линии через новый провод СИП, я не питаю особых иллюзий – длина линии до квартального трансформатора – более 150 м, а его мощность – всего 63 кВА.

Для нагрузки я использовал два масляных обогревателя, включенных через переноску (длина 3 м, сечение провода 1,5 мм 2 ) с тройной колодкой. Что получилось в этом случае:

Исходные данные и измерения для расчета тока КЗ в доме на даче

Расчет тока КЗ на даче по формулам

Видим, что нужный (наименьший) результат опять получен методом измерения сопротивления нагрузки – 88 А. Много это или мало? В данном случае – очень мало, учитывая то, что у меня на даче установлены автоматические выключатели С16. Даже для третьего способа со значением тока КЗ 120 А данный автомат не даст гарантии срабатывания при КЗ (вероятность будет около 50%).

А это не просто цифры – это вероятность возникновения пожара! Ведь выключение в случае КЗ будет только по тепловому расцепителю, а длиться это может несколько минут, согласно время-токовой характеристике.

Что ж, нужно заменить автоматические выключатели на другие – с номиналом 16 А и характеристикой отключения «В», которые при токе 80 А гарантированно отключат аварийную розетку. И запас в 10% будет обеспечен!

На этом всё – измерения, расчеты и выводы я сделал. В следующей части раскроем более глобальный аспект данной темы – обеспечение селективности защиты в электрических цепях.

Скачать

Эту статью можно почитать в бумажно-журнальном варианте:
• Измерение и расчет тока короткого замыкания / Статья «Измеряем ток КЗ в квартире и на даче», опубликованная в журнале «Электротехнический рынок» №2, 2021 г., pdf, 1.31 MB, скачан: 306 раз./

А обсудить её можно тут, на блоге СамЭлектрик.ру, в комментариях. Буду рад всем замечаниям и вопросам!

3.1.1 Выбор автоматических выключателей:

а) для генераторов.

Автоматические выключатели генераторов, не предназначенных для параллельной работы, должны иметь расцепители для защиты от перегрузок и токов короткого замыкания.

Автоматические выключатели генераторов, предназначенных для параллельной работы должны обеспечивать защиту от перегрузок, токов короткого замыкания, минимального напряжения, обратного окаили обратной мощности.

Автоматический выключатель для генераторов выбирается по номинальному току генератора и по номинальному напряжению:

Затем выбирают уставки расцепителей в соответствии с Правилами Речного Регистра. При перегрузке 110-150% номинального тока следует выключать генератор с выдержкой времени, соответствующей теплостойкости генератора. При перегрузке 150% номинального тока рекомендуется чтобы выдержка времени не превышала:

-2 минут для генератора переменного тока;

-15 секунд для генераторов постоянного тока.

Поэтому номинальный ток расцепиелей автоматов выбирают из условия:

На постоянном токе: Iном.ген. = Рном.ген х 10 3 / Uном.ген. (А)

На переменном трехфазном токе: Iном.ген. = Рном.ген х 10 3 / 3хUном.ген.х cos (А)

б)для фидеров приемников.

На фидерах, питающих электродвигатели мощностью свыше 0,5кВт, для защиты от токов короткого замыкания и перегрузки устанавливают автоматические выключатели с комбинированными расцепителями.

Сначала выбирают номинальный ток максимальных расцепителей, затем номинальный ток автомата. Номинальный ток лектротепловых расцепителей автоматов при защите от перегрузок, вклченных в разичные питающие линии, выбирают по расчетным токам этих лиий, исходя из условий:

Читать еще:  Розетки выключатели электрические размеры

-для электродвигателей: Iном.расц. > (1.05-1.025) Iном.двиг.

-для потребителей, не имеющих пусковых токов( трансформаторов, нагревательных, отопительных приборов, освещения): Iном.расц. > Iном.потр

Номинальный ток электромагнитного расцепителя в зоне коротких замыканий должен быть больше тока фидера припуске электродвигателя Iуст.кз. > 1.2 Iпуск.двиг.

Номинальный ток автоматического выключателя определяется по расчетному току фидера, исходя из условия : Iном.авт. > Iфид.

Номинальный ток электротепловых расцепителей при защите от перегрузок, включенных в фидер питания распределительных щитов, выбирают исходя из условий: Iном.расц. К3 х Iном.потр. + Iрез.РЩ

3.1.2 Выбор предохранителей.

При выборе предохранителей в начале производится выбор номинального тока плавкой вставки, а затем номинального тока предохранителя(патрона). Плавкая вставка предназначена для защиты сетей освещения, нагревательных, отопительных приборов, цепей управления, трансформаторов.

Плавкую вставку выбирают по условию: Iном.плав.вст. > Iном.потр

После выбора плавкой вставки, выбирают соответствующий ей патрон предохранителя исходя из условия: Iном.предох. > Iном.плав.вст

3.2 Выбор электроизмерительных приборов.

Определяем тип, систему и число измерительных приборов, подбираем верхние пределы измерения их шкал.

Правила Речного Регистра требуют применять электроизмерительные приборы с пределом шкал не менее:

-вольтметры – 120% номинального значения;

-амперметры для генераторов, не работающих параллельно, и приемников – 130% номинального тока;

— амперметры для генераторов, работающих параллельно, шкала ока и нагрузки – 130% номинального тока, а шкала обратного тока – 15% номинального;

-ваттметры для генераторов, работающих параллельно. для мощности нагрузки- 130% номинальной, а шкала для обратной мощности – 15% номинальной;

— частотометры — + 10% номинальной частоты.

Нагрев кабелей при коротком замыкании (часть 1)

Правильно рассчитанная и надлежащим образом выполненная электрическая сеть не гарантируют исключение возможности возникновения аварийных ситуаций, приводящих к недопустимому перегреву электрических кабелей при возникновении короткого замыкания.

Например, подобная ситуация, как отмечалось в работе Сопротивление цепи фаза — ноль возникает при подключении нагрузки в розеточную сеть через удлинитель. Начиная с некоторой длины добавленного к групповой линии провода удлинителя сопротивление цепи фаза – ноль увеличивается до значения, при котором ток короткого замыкания будет меньше порога срабатывания электромагнитного расцепителя автоматического выключателя. Поэтому при проектировании электроустановок желательно учитывать возможность нештатных условий эксплуатации электропроводки.

В соответствии с ГОСТ Р МЭК 60724-2009 «Предельные температуры электрических кабелей на номинальное напряжение 1кВ в условиях короткого замыкания» температура жил кабеля (до 300 мм 2 включительно) с изоляцией из ПВХ пластиката при коротком замыкании не должна превышать 160 градусов. Достижение этой температуры допускается при длительности короткого замыкания до 5 секунд. При такой продолжительности короткого замыкания изоляция кабеля не успевает нагреться до такой же температуры. При более длительных коротких замыканиях предельная температура нагрева жил должна быть уменьшена.

Рассмотрим возникновение подобной ситуации на примере использования автоматического выключателя группы «С». Время – токовая характеристика выключателя приведена на Рис. 1. В приведенных характеристиках выделены зона «a» — тепловой расцепитель и зона «b» — электромагнитный расцепитель. На графике показаны две кривые 1 и 2 зависимости времени срабатывания выключателя от тока, которые показывают пределы технологического разброса параметров выключателя при его изготовлении. Для автоматических выключателей группы «С» в пределах технологического разброса кратность тока срабатывания электромагнитного расцепителя к номинальному току срабатывания теплового расцепителя находится в пределах от 5 до 10. Нас интересует только кривая 2 для переменного тока (АС), показывающая максимальное время срабатывания выключателя.

Как видно из графика на Рис. 1, при незначительном уменьшении тока короткого замыкания ниже порога срабатывания электромагнитного расцепителя время срабатывания автоматического выключателя определяется тепловым расцепителем и достигает величины порядка 6 секунд.

Рис. 1 Время – токовая характеристика автоматов группы С.

Попробуем выяснить, что происходит с кабелями за промежуток времени, в течение которого сработает тепловой расцепитель. Для этого необходимо вычислить зависимости температуры жил кабелей от времени прохождения по ним токов, близких к порогу срабатывания электромагнитного расцепителя.

В Таблице 1 даны расчетные значения температур жил кабелей в зависимости от продолжительности короткого замыкания (при разных токах) для кабеля с медными жилами сечением 1,5 кв. мм. Кабель данного сечения повсеместно используется в осветительных групповых сетях жилых и общественных зданий.

Для вычисления температур жил кабелей использована методика расчета из ГОСТ Р МЭК 60949-2009 «Расчет термически допустимых токов короткого замыкания с учетом неадиабатического нагрева».

Температура жил кабеля определяется по формуле:

где, Θf — конечная температура жил кабеля о С;

Θi– начальная температура жил кабеля о С;

β – величина, обратная температурному коэффициенту сопротивления при 0 °C, К, для меди β=234,5;

K – постоянная, зависящая от материала токопроводящего элемента, А · с 1/2 /мм 2 ,для меди K=226;

t – длительность короткого замыкания, с;

S – площадь поперечного сечения токопроводящей жилы, мм 2 ;

ISC — известный максимальный ток короткого замыкания (среднеквадратичное значение), А;

IAD=ISC/ε — ток короткого замыкания, определенный на основе адиабатического нагрева (среднеквадратичное значение), А;

ε – коэффициент, учитывающий отвод тепла в соседние элементы;

X, Y — постоянные, используемые в упрощенной формуле для жил и проволочных экранов, (мм 2 /с) 1/2 ; мм 2 /с, для кабелей с медными жилами и изоляцией из ПВХ пластиката X=0,29 и Y=0,06;

Вычисления произведены для температуры кабеля до короткого замыкания 55 градусов. Такая температура соответствует рабочему току, проходящему по кабелю до возникновения короткого замыкания порядка 0,5 – 0,7 от предельно допустимого длительного тока при температуре окружающей среды 30 – 35 градусов. В зависимости от предполагаемых условий эксплуатации электроустановки температура жил кабелей до короткого замыкания при проектировании электрической сети может быть изменена.

Температура медных жил кабеля с изоляцией из ПВХ пластиката град., при коротком замыкании длительностью, сек:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector