Com-ip.ru

КОМ IP
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Секционный выключатель 0 4кв

Сириус-АВР

Новое микропроцессорное устройство автоматики присоединений напряжением 0,4 и 6–35 кВ «Сириус-АВР» предназначено для АВР – автоматического ввода резервного источника питания в случае пропадания напряжения на одном из питающих вводов путем включения секционного выключателя, а также ВНР – восстановления схемы нормального режима после восстановления питания на отключенном вводе.

К устройству подводятся две системы трехфазных напряжений двух вводов.

  • Функции
  • Технические характеристики
  • Исполнения
  • Документация

Основные функции:

  • Устройство управляет тремя выключателями – двумя вводными и секционным. При пропадании напряжения на одном из вводов устройство отключает соответствующий вводной выключатель и включает секционный, подключая потребителей энергии к исправному вводу.
  • При восстановлении напряжения на ранее отключенном вводе предусмотрено два режима ВНР – сначала отключается секционный выключатель и потом включается вводной, или наоборот – сначала включается вводной (под уставку – с проверкой синхронизма), и лишь затем отключается секционный, что обеспечивает бесперебойность энергоснабжения потребителей.
  • Кроме этого устройство контролирует исправность всех трех выключателей, включая исполнение ими поданных на них команд, а также выявляет случаи несанкционированных переключений, включая командные, при выявлении которых функция ВНР блокируется.

Ключевые особенности:

    — С помощью уставки устройство настраивается либо на сеть 0,4 кВ, либо – 6–35 кВ. В этом случае для принятия решений используются линейные напряжения 100 В, поступающие от двух ТН.

      — Имеется блокировка АВР и ВНР для сетей 6–35 кВ в случае превышения напряжения 3U уставки.

        — Предусмотрен дискретный вход ускорения АВР, когда АВР будет срабатывать при снижении на одной из групп входных напряжений ниже уставки без выдержки времени (от защит трансф-ра).

          — Устройство имеет развитые сервисные возможности – архив срабатываний, событий и осциллограмм, клавиатуру и дисплей, наравне с остальными терминалами серии «Сириус-2».

            — Для связи с компьютером или с системой АСУТП устройство имеет порт USB на передней панели и порт RS485 с протоколом Modbus RTU – на задней.

              — Устройство может работать как при питании от постоянного, так и переменного или выпрямленного оперативного тока, в том числе и по дискретным входам.

                — Габаритные размеры устройства – 162*132*175 мм, масса не превышает 3 кг.

Технические характеристики Сириус-АВР

ХарактеристикаЗначение
Число аналоговых входов по напряжению6
Число дискретных входов11
Число дискретных выходных сигналов10
Габаритные размеры (ВхШхГ), мм162х132х175
Масса, кг, не более3

Реле автоматического ввода резерва «Сириус-АВР» доступно для заказа в нескольких исполнениях. Конкретное исполнение устройства указывается в его обозначении, состоящем из следующих элементов:
Реле автоматического ввода резерва «Сириус-АВР-nnnB-Х», где

«Сириус-АВР» — фирменное название устройства;

nnnB – исполнение устройства по напряжению оперативного тока:
110В – для напряжения питания 110 В постоянного тока;
220В — напряжение питания 220 В постоянного или переменного тока.

Х – исполнение устройства по цвету светодиодов индикации положения выключателей:
М – «включен» — зеленый, «отключен» — красный;
Р – «включен» — красный, «отключен» — зеленый;

Пример записи обозначения устройства «Сириус-АВР» с напряжением оперативного питания 220В и с цветовой индикацией положения выключателей «Вкл.» — красный при заказе:
«Реле автоматического ввода резерва Сириус-АВР-220В-Р».

Секционный выключатель 0 4кв

Повышение надежности электроснабжения остается одной из насущных проблем российской электроэнергетики, поэтому системы автоматического ввода резерва (АВР) находятся в центре внимания специалистов.

В схеме, предлагаемой московским автором, реализован экономически целесообразный подход к решению задачи автоматического подключения к системе электропитания резервных источников в случае аварии основных источников.

Автоматический ввод резерва (АВР) — важное звено в системе поддержания электроснабжения потребителей при исчезновении питания. Предлагаемый вариант схемы с использованием трех источников энергии и двух секций нагрузки — АВР «3 в 2» позволяет реализовать надежный, понятный, ремонтопригодный АВР на базе стандартных блоков управления, которые выпускаются многими производителями.

Традиционная схема

Классическая схема АВР «3 в 2» основывается на двух независимых сетевых вводах и одном электроагрегате (ЭА), например дизель-генераторной установке. Нагрузка распределяется на две секции, связанные секционным выключателем (рис. 1).

В нормальном режиме каждая секция нагрузки получает питание от своего сетевого источника через Ввод 1 и Ввод 2. ЭА в этом режиме отключен вместе с секционным выключателем Q3.

При нарушении питания со стороны, например, Ввода 1 схема АВР «3 в 2» отключает вводной автоматический выключатель Q1 и включает секционный выключатель Q3. Команда на запуск ЭА не поступает.

Как правило, через какое-то время качество напряжения на Вводе 1 восстанавливается и схема должна отключить секционный выключатель Q3 и включить выключатель Q1 Ввода 1.

Но если после нарушения питания (потери) со стороны Ввода 1 происходит потеря и Ввода 2, то схема АВР «3 в 2″должна отключить все вводные автоматические выключатели Q1 и Q2, включить секционный автоматический выключатель Q3 и после выхода напряжения ЭА на номинальные параметры подключить его к нагрузкам секций 1 и 2, включив Q4. И, как принято, схема должна отработать обратный путь: восстановить нормальную или преднормальную (работа на одном сетевом вводе) схему, предварительно подав сигнал на останов ЭА.

На практике эта логика реализуется, как правило, на основе микропроцессорных программируемых реле, реле контроля фаз, промежуточных реле. Релейная схема очень громоздкая: много режимов, блокировок, регулировок порогов напряжения, уставок времени включения/отключения автоматических выключателей. При этом на практике получается, что решения этого АВР далеки от совершенства.

Каждый производитель НКУ пишет свою программу, старается ее закрыть паролями от вмешательства потребителя и конкурентов, потом создает «Руководство по эксплуатации», пытаясь дать рекомендации по пусконаладке и обслуживанию. Обычно это заканчивается выездом специалиста компании-изготовителя НКУ на объект и запуском АВР после доработок на месте.

В дальнейшем любая внештатная ситуация или сбой программы в программируемом реле вынуждают потребитель снова вызывать специалиста, причем, если у НКУ закончился срок гарантийного обслуживания, то специалист едет из Москвы за 5000 км за счет потребителя. Из-за всего этого АВР зачастую переводят в ручной режим.

Рациональная схема

Предлагаемая схема АВР «3 в 2» учитывает все возможные варианты работы. Решение не требует дополнительных знаний по программированию контроллеров, а также не вызывает сложностей в пусконаладке и последующей эксплуатации. Эта схема проста, надежна и ремонтопригодна.

Если рассмотреть основные режимы работы схемы, то можно выделить режим питания нагрузок секций от сетевых источников и режим питания всей нагрузки от ЭА. По сути, эти два режима независимы и каждый при своей активности должен блокировать работу другого. Поэтому целесообразно рассмотреть работу схемы «3 в 2» как комбинацию схем «2 в 2» и «2 в 1 ЭА».

Итак, схема «2 в 2» — это два независимых сетевых источника, две секции нагрузки, соединенные секционным выключателем. В нормальном режиме каждый сетевой источник питает свою секцию, а в аварийном обе секции получают питание только от одного сетевого источника.

Схема «2 в 1 ЭА» — это один сетевой источник, один автономный ЭА, например ДГУ, одна нагрузка, которая получает в нормальном режиме питание от сетевого источника, а в аварийном от ЭА. На рис. 2 представлен фрагмент принципиальной схемы подключения блоков управления АВР. Блок управления АВР1 «2 в 2» контролирует параметры напряжения на сетевых вводах трансформаторов Т1 и Т2. По параметрам этих напряжений в соответствии с логикой, заложенной в программе АВР, этот блок управляет вводными автоматическими выключателями Q1, Q2 и секционным автоматическим выключателем Q3.

Блок управления АВР2 «2 в 1 ЭА» контролирует параметры напряжения на одном из сетевых вводов трансформаторов Т1 и Т2. Сетевое напряжение подается от мини-АВР, реализованного на механически сблокированных промежуточных контакторах 1К1 и 1К2.

Контакторы управляются с помощью реле выбора фаз РВФ (рис. 3). На вход этого реле подаются любые три фазных напряжения, на выходе всегда одна из фаз. Приоритетом является первая фаза (через К1). Если она пропадает, то подключается вторая (через К2), если пропадает и вторая, то подключается третья фаза (через К3).

Катушки управления промежуточных контакторов 1К1, 1К2 управляются с помощью релейных выходов К1 и К2. На рынке представлено множество устройств, реализующих функции РВФ. Основное их назначение — быстрое переключение фаз (время переключения различно у производителей).

Кроме того, в схеме присутствует источник бесперебойного питания (ИБП) на 500 ВА (рис. 3) для управления схемой АВР на момент запуска ЭА при полной потере сетевых вводов. Его можно оперативно отключить посредством байпасного выключателя нагрузки QS1 и при необходимости заменить аккумуляторные батареи.

Таким образом, блок АВР2 не участвует в работе общей схемы, пока есть качественное напряжение хотя бы на одном сетевом вводе. Если напряжение пропадает на обоих сетевых вводах, то блок АВР2 подает сигнал на отключение вводных автоматических выключателей Q1, Q2, затем формирует команду на запуск ЭА и при выходе параметров напряжения на зажимах ЭА на номинальные значения включает автоматические выключатели Q3 и Q4. При необходимости, одновременно с их включением можно сформировать сигнал на отключение части нагрузок секций 1 и 2. Для этого автоматические выключатели отходящих линий секций 1 и 2 должны быть снабжены независимыми расцепителями или моторными приводами.

В итоге организуется надежное электроснабжение от двух сетевых источников и одного ЭА. Назвать эту схему бесперебойной не совсем корректно, так как существуют необходимые временные задержки в переключениях, но она обеспечивает четкую работу оборудования в автоматическом режиме.

Нужно отметить, что в ассортименте большинства мировых производителей блоков АВР на микропроцессорной основе представлены блоки управления для схем АВР «2 в 2» и «2 в 1 ЭА». Цена этих блоков у разных изготовителей находится в диапазоне от 6000 до 40000 руб. за единицу, причем, как правило, эти устройства обладают одинаковой функциональностью: «всё в одном». Только одни производители предусматривают больше переключателей основных уставок и регулировок, открывают доступ к управлению режимами, а другие их жестко фиксируют и прячут. Немаловажно, что эти стандартные блоки прошли многочисленные тесты и испытания, снабжены понятной инструкцией по их применению.

Производство РУНН

Шкафы распределительные РУНН предназначены для комплектования щитов, служащих для приема и распределения электрической энергии, а так же для защиты от перегрузок и токов короткого замыкания, замыкания на землю в трехфазных электрических сетях с глухозаземленной нейтралью напряжением 380/220В переменного тока частотой 50Гц.
В распределительном устройстве низкого напряжения применяется схема с одной системой сборных шин, с секционированием, которое осуществляется при помощи секционного выключателя. Секции работают раздельно, а секционный выключатель при нормальном режиме работы отключен.
Производство
Производство РУНН 0,4 осуществляется как по типовым проектам, так и по проекту заказчика на современном оборудовании при использовании комплектующих как отечественного производства, так и ведущих европейских производителей. Шкафы РУНН комплектуются силовыми аппаратами — автоматическими выключателями серий ВА, Протон, Электрон фирмы «Контактор», выключатели серий Compact NS, Masterpact NT и NW фирмы «Schneider Electric» и Sace Emax, Tmax и XT фирмы «ABB». Все применяемые автоматические выключатели — имеют стационарный, втычной или выдвижной варианты исполнения. Автоматические выключатели выдвижного и втычного типа обеспечивают их быструю замену и регулировку без обесточивания секции или шкафа.
По назначению разделяются
Шкафы для комплектования щитов делятся на следующие группы: вводные, линейные, вводно-линейные, секционные, секционно-линейные, шкафы компенсации реактивной мощности и шкафы управления:

  • — Шкаф вводной предназначен для подключения силовых вводов и передачи электроэнергии на секции и отходящие линии. РУНН комплектуется аналоговыми приборами вольтметром и амперметрами.
  • — Шкаф секционный обеспечивает секционирование сборных шин. В шкафу может быть собран АВР различных вариантов, чаще всего реализуется при помощи программируемого логического контроллера Zelio Logic.
  • — Шкаф линейный предназначен для подключения и защиты отходящих линий. Также предназначен для питания потребителей, оборудования автоматики, ввода электроэнергии от независимых источников, распределения электроэнергии.

При сборке РУНН шкафы объединяются сборными шинами.
Все аппараты размещаются в ячейках силовых или ячейках собственных нужд и управления. При необходимости, шкафы могут быть доукомплектованы устройствами автоматического ввода резерва на основе электромеханических реле или контроллеров.
Конструкция и комплектация
РУНН представляют собой каркасную сборную конструкцию одно / двустороннего обслуживания ячеечного типа, доступ к органам оперативного управления осуществляется с фасадной стороны.
Ячейки в шкафу отделены друг от друга перегородками из стальных листов. Каждая ячейка имеет отдельную дверь, оснащенную замком. В задней части корпуса размещены сборные шины, шинные ответвления и трансформаторы тока.
В РУНН устанавливаются аппараты защиты, измерительные приборы, средства релейной защиты и автоматики, а также вспомогательные устройства со всеми внутренними электрическими соединениями главных и вспомогательных цепей.
Для электрического и механического соединения РУНН с силовым трансформатором КТП служат шинопроводы и кожухи.
Оперативное обслуживание РУНН в составе КТП осуществляется с фасадной стороны.

На фото представлен РУНН на два ввода с секционированием, номинальный ток 1000А (РУ-0,4кВ) на базе корпусов Prisma Plus и комплектующих Schneider Electric, все токоведущие части закрыты пластронами, на отходящих линиях автоматические выключатели модульного типа втычного исполнения, автоматический ввод резерва реализован при помощи логического программируемого контроллера Zelio Logic.

На фото распределительное устройство низкого напряжения РУНН 630А на базе шкафов DKC и комплектующих фирмы ABB, все токоведущие части закрыты пластронами, переход питания с первого ввода на второй осуществляется с помощью автоматического ввода резерва.

На фото распределительное устройство РУНН 1600А выполнено с секционированием по форме 3b. Клеммы для внешних проводников отделены от силовых шин, функциональные блоки разделены между собой и отделены от силовых шин, клеммы отделены от силовых шин, но не разделены между собой.

Как работают устройства автоматики включения резерва (АВР) в электрических сетях

В статье, описывающей работу устройств АПВ, рассмотрены случаи пропадания электроэнергии по различным причинам и методы ее восстановления автоматикой линий электропередач в том случае, когда причины создания аварийных ситуаций самоустранились и перестали действовать.

Птица, пролетающая между проводами воздушной ЛЭП, может создать короткое замыкание через свои крылья. Это повлечет снятие напряжения с ВЛ отключением от защит силового выключателя на питающей подстанции.

Устройства АПВ через несколько секунд восстановят питание потребителей электроэнергией, а защиты в этот момент уже не отключат его потому, что пораженная током птица успеет упасть на землю.

Однако, если на воздушную ЛЭП от порыва ураганного ветра упадет рядом выросшее дерево, сломав опору, то произойдет длительное короткое замыкание, оборвутся провода, которые исключат быстрое автоматическое восстановление электроснабжения подключенных объектов.

Все потребители этой линии не смогут получать питание до полного окончания ремонтных работ, которые могут растянуться на несколько суток…

Представим, что такое повреждение произошло на линии, которая снабжает электроэнергией районный город с большими производственными мощностями, например, использующими электрические печи в автоматическом режиме для плавки стекла.

С отключением электроэнергии плавильные ванны перестанут работать, а все жидкое стекло затвердеет. В итоге предприятие потерпит огромные материальные убытки, будет поставлено перед необходимостью остановки производства, проведения дорогостоящего ремонта…

Чтобы избежать подобных ситуаций на всех крупных производственных объектах предусматривается источник резервного электропитания, состоящий из дублирующей линии электропередачи от другой подстанции или собственная мощная генераторная установка.

На питание от нее потребуется переходить быстро и надежно. Для этого используются устройства автоматического включения резерва, сокращенно называемые АВР.

Таким образом, рассматриваемая автоматика предназначена для бесперебойного снабжения ответственных потребителей электроэнергией при возникновении серьёзных аварий на основной питающей линии за счет быстрого задействования резервного источника.

Требования, предъявляемые к АВР

Устройства автоматики ввода резервного питания должны срабатывать:

максимально быстро после потери электроэнергии на основной линии;

при любом пропадании напряжения на собственных шинах потребителя без анализа причин возникшей неисправности, если не предусмотрена блокировка запуска от определенного вида защит. Например, дуговая защита шин должна блокировать запуск АВР с целью предотвращения развития возникшей аварии;

с необходимой задержкой при выполнении определенных технологических циклов. Например, во время включения под нагрузку мощных электродвигателей возможна «просадка» напряжения, которая быстро заканчивается;

всегда только однократно, ибо иначе возможно многократное включение на не устраняемое короткое замыкание, способное полностью разрушить сбалансированную электрическую систему.

Естественным требованием, необходимым для надежной работы схемы, является постоянное поддержание ее в исправном состоянии и контроль технических параметров в автоматическом режиме.

Преимущества схемы АВР над параллельным питанием от двух источников

На первый взгляд, для питания ответственных потребителей можно вполне обойтись их одновременным подключением к двум разным линиям, берущих энергию от разных генераторов. Тогда при аварии на одной из ВЛ эта цепочка разорвется, а другая останется в работе и будет осуществлять бесперебойное питание.

Такие схемы уже создавались, но не получили массового практического применения из-за следующих недостатков:

при возникновении коротких замыканий на любой линии токи значительно увеличиваются за счет подпитки энергией от обоих генераторов;

на питающих трансформаторных подстанциях увеличиваются потери мощности;

значительно усложняется схема управления электроснабжением за счет использования алгоритмов, одновременно учитывающих состояние потребителя и двух генераторов, возникновения перетоков мощностей;

сложность реализации защит, взаимосвязанных алгоритмами на трех удаленных концах.

Поэтому питание потребителя от одного основного источника и автоматический переход на резервный генератор при пропадании напряжения считается наиболее перспективным. Время перерыва в энергоснабжении при этом способе может быть менее 1 секунды.

Особенности создания схем АВР

Для работы автоматики может быть заложен один из следующих алгоритмов:

одностороннее питание от рабочей станции с нахождением в горячем резерве дополнительной, вводимой в работу только при пропадании напряжения от основного источника;

возможности двухстороннего использования любого из источников в качестве рабочей станции;

способности схемы АВР автоматически возвращаться на питание от основного источника после восстановления напряжения на шинах входящего выключателя. При этом создается последовательность срабатывания силовых коммутационных устройств, исключающих возможность подключения потребителя в режим параллельного питания от двух источников;

простая схема АВР, исключающая переход на режим восстановления питания от основного источника в автоматическом режиме;

ввод резервного питания должен происходить только в том случае, когда приняты меры подачи напряжения на поврежденный силовой элемент основного питания отключением соответствующего выключателя.

В отличие от автоматики АПВ устройства АВР показывают наибольшую эффективность при пропадании питания, оцениваемую в 90÷95%. За счет этого они широко применяются в системах энергоснабжения промышленных предприятий.

Автоматическое включение резерва применяется для питания линий электропередач, трансформаторов (силовых и собственных нужд), секционных выключателей.

Принципы, заложенные в работу АВР

Для анализа напряжения на линии основного питания используется измерительный орган, состоящий из реле контроля напряжения РКН в комплексе с измерительным трансформатором и его цепями. Высоковольтное напряжение первичной сети, пропорционально преобразованное во вторичную величину 0÷100 вольт, поступает на обмотку контролирующего реле, которое выполняет роль пускового органа.

Настройка уставок реле РКН имеет особенность: требуется учитывать низкий необходимый уровень срабатывания пускового органа, обеспечивающего снижение напряжения до 20÷25% номинальной величины.

Это связано с тем, что при близких коротких замыканиях происходит кратковременное «проседание напряжения», ликвидируемое срабатываниями токовых защит. А пусковые органы РКН необходимо отстраивать от этих процессов. Но при этом нельзя использовать обычные типы реле из-за их неустойчивой работы на начальном пределе шкалы.

Для эксплуатации в пусковых органах АВР используются специальные конструкции реле, исключающие вибрации и дребезг контактов при срабатывании на нижних пределах.

Когда питание оборудования происходит нормально по основной схеме, то реле контроля напряжения просто отслеживает этот режим. Стоит только напряжению исчезнуть, как РКН переключает свои контакты и этим выдает сигнал на электромагнит включения соленоида резервного выключателя для ввода его в работу.

При этом соблюдается определенная последовательность срабатывания силовых элементов первичной схемы, которая заложена в логику управления системы АВР при ее создании и настройке.

Кроме пропадания напряжения на основной линии питания, для полного срабатывания пускового органа АВР обычно необходимо выполнить проверку еще нескольких условий, например:

отсутствие неустраненного КЗ на защищаемой зоне;

включение вводного выключателя;

наличие напряжения на резервной линии питания и некоторые другие.

Все пусковые факторы, введенные для срабатывания АВР, проверяются в алгоритме логики и при соблюдении необходимых условий выдается команда на исполнительный орган с учетом выставленной временно́й уставки.

Примеры выполнения некоторых схем АВР

В зависимости от величины рабочего напряжения системы и сложности конфигурации сети схема АВР может иметь разную структуру, выполняться на постоянном или переменном оперативном токе или обходиться вообще без него за счет использования основного напряжения сети в схемах 0,4 кВ.

АВР высоковольтной линии на постоянном оперативном токе

Кратко рассмотрим логику работы релейной схемы резервирования питания линии с основным источником питания №1.

Если на участке Л-1 произойдет КЗ, то защиты отключат выключатель В-1 и на шинах присоединения пропадет напряжение. Реле минимального напряжения «Н

От его контактов запустятся команды на срабатывание целого ряда реле, выполняющих различные функции контроля и выдачи управляющего сигнала на соленоид включения силового выключателя В-2.

В схеме обеспечивается однократность действия и выдача информации о срабатываниях сигнальными реле.

АВР секционного выключателя на постоянном оперативном токе

Рабочие силовые трансформаторы Т1 и Т2 запитывают свою секцию шин, разъединенных секционным выключателем В-5.

При отключении или выводе из работы любого из этих трансформаторов подача питания на отключенный участок осуществляется коммутацией выключателя В-5. Реле РПВ обеспечивает однократность действия АПВ.

Работа схемы построена на взаимодействии блок-контактов выключателя с подачей + опер тока на обмотки реле РПВ и сигнальные блинкера. Здесь же предусмотрено оперативное ускорение ОУ, вводимое в работу на время выполнения переключений дежурным персоналом.

Принцип формирования логики работы АВР может быть изменен. Например, при эксплуатации схемы с включением дополнительного секционного выключателя, как показано на картинке ниже, потребуются дополнительные пусковые и логические элементы.

АВР секционного выключателя на переменном оперативном токе

Особенности работы автоматики на источниках, использующих энергию от расположенных на подстанции измерительных ТН, можно оценить по следующей схеме.

Здесь контроль напряжения на каждой секции выполняют реле 1РН и 2РН. Их контакты запускают в работу органы отсчета времени 1РВ или 2РВ, которые воздействуют через блок-контакты и обмотки блинкеров на соленоиды силовых выключателей.

Принцип выполнения АВР потребителей сети 0,4 кВ

При создании резервного питания трехфазной сети используют магнитные пускатели КМ1, КМ2 и реле минимального напряжения kV, контролирующее параметры основной линии Л1.

Обмотки пускателей подключены от одноименных фаз своих линий через коммутационные контакты логики к заземленному нулю, а силовые контакты врезаны в шины питания потребителя с обеих сторон.

Контактная система реле напряжения в любом положении подключает в сеть только один какой-то пускатель. При наличии напряжения на линии Л1 kV сработает и своим замыкающим контактом включит обмотку пускателя КМ1, который своей силовой цепью будет запитывать потребителя и подключит свою сигнальную лампочку, одновременно выводя из работы обмотку КМ2.

При пропадании напряжения на Л1 реле kV разрывает цепь питания обмотки пускателя КМ1 и запускает КМ2, выполняющего для линии Л2 те же функции, что и КМ1 для своей цепочки в предыдущем случае.

Силовые рубильники QF1 и QF2 служат для полного снятия напряжения со схемы.

Этот же алгоритм может быть взят за основу для создания питания ответственных потребителей в сети однофазного питания. Просто в нем надо исключить лишние элементы и применить однофазные пускатели.

Особенности современных комплектов АВР

Для объяснения принципов построения алгоритмов автоматики была намеренно использована старая релейная база, позволяющая более доступно понять работающие алгоритмы.

Современные статические и микропроцессорные устройства работают по этим же схемам, но имеют улучшенный вид, меньшие габариты, обладают более удобными настройками и возможностями.

Их создают отдельными блоками или целыми комплектами, собранными в специальных модулях.

Для промышленного использования комплекты АВР выпускают полностью готовыми к использованию комплектами, размещенными в специальных защищенных корпусах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

голоса
Рейтинг статьи
Читать еще:  Выключатель материал винтовых зажимов жил провода
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector