Com-ip.ru

КОМ IP
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Типы приводов для масляных выключателей

Большая Энциклопедия Нефти и Газа

Масляный выключатель — тип

Трансформатор герметический без консерватора; на нем установлен масляный выключатель горшкового типа и два переключателя, позволяющие получить 21 ступень низкого напряжения в пределах 1100 — 1400 в. [31]

К той же группе масляных выключателей относятся и отечественные масляные выключатели типа ВМ . П-6 Т ( Т — тропическое исполнение), баки которых выполнены из изоляционного материала. Сверху цилиндра бака установлен металлический корпус 4, в котором размещен механизм подвижного контакта. [33]

В настоящее время отечественные заводы выпускают новую серию масляных выключателей типа МКП , снабженных камерами поперечного масляного дуть я: на 35 кв типа МКП-35, на ПО кв — МКП-ПО, на 154 кв — МКП-154, на 220 кв — МКП-220. Рассмотрим здесь устройство и работу масляного выключателя типа МКП-ПО. На рис. 11 — 5 схематично показана камера поперечного масляного дутья в разных положениях. Разрез фазы этого выключателя показан на рис. 11 — 6, где видна установка камер. [34]

Весьма трудоемкой работой на открытом РУ является монтаж масляных выключателей типов МКП-110 и МКП-160, которые поставляются заводами-изготовителями в разобранном виде ( отдельно фазы, привод, маслонаполненные вводы, трансформаторы тока встроенного типа), и воздушных выключателей типа ВВН-110. После ревизии и подсушки изоляционных деталей монтаж выключателей типов МКП-110 и МКП-160 ведется в следующей очередности. Баки выключателя устанавливаются краном на фундамент, выверяются и надежно закрепляются на нем во избежание смещений при работе привода или отключениях, после чего производятся тщательная выверка и соединение валов механизма выключателя и привода. Устанавливается и надежно закрепляется на фундаменте или конструкции привод масляного выключателя. Фундаментные болты масляного выключателя и привода заливаются бетоном. Проверка работы выключателя совместно с приводом производится лишь по истечении срока выдержки бетона, установленного строительными нормами. Чтобы избежать длительной задержки монтажа из-за выдержки бетона, необходимо при устройстве фундамента заложить по шаблону анкерные болты и залить их бетоном. После закрепления баков выключателя на фундаменте устанавливаются в соответствующие коробки трансформаторы тока с предварительно проверенным сопротивлением изоляции их вторичных обмоток. [35]

В настоящее время наиболее распространенными приводами для управления масляными выключателями типов ВМГ и ВМ являются ручные автоматические приводы типа ПРБА. [37]

Помимо оценки состояния подвижной системы аппарата, рекомендуется у масляных выключателей типа ВМ-35 производить измерение сопротивления изоляции фибровых прокладок дугогасительных камер. [38]

Открытое РУ 35 кв с двумя системами шин с масляными выключателями типа ВМ-35 , на металлических сыорзх. [39]

На напряжении 110 и 220 кВ наибольшее применение на предприятиях находят масляные выключатели типов МКП , а при мощной питающей энергосистеме — типа У. [40]

На напряжении ПО и 220 кВ наибольшее применение на промпредприятиях находят масляные выключатели типов ВМК . [41]

На напряжении ПО и 220 кВ наибольшее применение на предприятиях находят масляные выключатели типов МКП , а при мощной питающей энергосистеме — типа У. [42]

На рис. 18 — 10 показана установка привода типа ПС-10 на масляном выключателе типа ВМГ-133 . Вал привода 1 муфтой 2 соединен со вспомогательным валом 3, вращающимся в подшипнике 4, укрепленном на раме 5 выключателя. Таким образом, вращение вала привода через шарнирно соединенную систему, состоящую из рычага 6, тяги 7 и рычага 8, передается на вал выключателя. [44]

При напряжении 35 кВ в сетях небольшой и средней мощности целесообразно применение масляных выключателей типа С-35 . В более мощных сетях могут быть применены выключатели МКП и ВМК. [45]

Масляные выключатели. Типы, виды, устройство, работа маслянных выключателей.

Масляные выключатели — одни из первых коммутационных аппаратов в электроустановках высокого напряжения, применяются с конца прошлого столетия, не потеряли своего значения и широко используются в настоящее время. В СССР это основной вид выключателей на 6—220 кВ.

Различают выключатели масляные баковые — с большим объемом масла, масло служит и как дугогасящая среда, и как изоляция, и выключатели маломасляные — с малым объемом масла, масло служит только дугогасящей средой.

На напряжения 35-220 кВ применяются в основном баковые выключатели. Маломасляные выключатели являются основными на напряжение до 10 кВ. И это положение сохранится надолго, особенно если будут повышены их номинальные токи до 4 кА, а отключаемый ток — до 40— 50 кА. Начинают все более широко применяться маломасляные выключатели в наружных установках на 110 и 220 кВ при условии их достаточной отключающей способности (серия ВМТ).

Достоинства масляных выключателей — относительная простота конструкции, большая отключающая способность и независимость от атмосферных явлений. Недостатком, особенно баковых выключателей, является наличие большого количества масла, что приводит к большим габаритам и массам как самих выключателей, так и распределительных устройств, повышенной пожаро- и взрывоопасности, необходимости специального масляного хозяйства.


Рис. 1-1. Полюс масляного бакового выключателя на 220 кВ

1 — бак; 2 — дугогасительная камера; с неподвижными контактами и шунтирующим резистором; 3 — изоляция бака; 4 — ввод; 5 — приводной механизм;6 — трансформатор тока; 7 — направляющее устройство; 8 — шунтирующий резистор; 9 — изоляционная тяга; 10 -траверса с подвижными контактами;II — положение траверсы после отключения

Выключатели масляные баковые. Эти выключатели на напряжение до 20 кВ и относительно малые токи отключения выполняются большей частью однобаковыми (три полюса в одном баке), на напряжение 35 кВ и выше — трехбаковыми (каждая фаза в отдельном баке) с общим или индивидуальными приводами. Выключатели могут снабжаться электромагнитными или пневматическими приводами и работают с автоматическим повторным включением (АПВ).

Основой конструкции выключателя (рис. 1-1) является бак цилиндрической или эллипсоидальной формы, внутри которого и на нем монтируются контактная и дугогасительные системы, вводы и привод. Бак заливается до определенного уровня трансформаторным маслом. Между поверхностью масла и крышкой бака должен остаться некоторый свободный объем (обычно 20 — 30 % объема бака) — воздушная буферная подушка, сообщающаяся с окружающим пространством через газоотводную трубку. Воздушная подушка снижает давление, передаваемое на стенки бака при отключении, исключает выброс масла из бака и предохраняет выключатель от взрыва при чрезмерном давлении.

Высота уровня масла над местом разрыва контактов должна быть такой, чтобы исключить выброс в воздушную подушку горячих газов, выделяющихся при отключении вследствие разложения масла. Прорыв этих газов может при определенных их соотношениях привести к образованию взрывчатой смеси (гремучего газа) и взрыву выключателя. Высота уровня масла над местом разрыва контактов определяется номинальными напряжениями и током отключения и может составлять от 300—600 мм в выключателях на напряжение 6—10 кВ и до 2500 мм в выключателях на напряжение 220 кВ.

При напряжениях 3—6 кВ и малых отключаемых токах применяется простой разрыв в масле. При напряжениях 10, 35 кВ и выше в зависимости от значений напряжения и отключаемого тока используются как простые, так и более сложные дугогасительные устройства с продольным, поперечным, продольно-поперечным дутьем, с одно- и многократным разрывом.

Читать еще:  Трехклавишный выключатель с розеткой виды

Пример дугогасительной камеры с промежуточным контактом и продольным дутьем, применяемой в выключателях на 110 и 220 кВ, приведен на рис. 9-2. При отключении сначала размыкаются контакты 2 и 1, а затем контакты 1 и 8. Дуга между контактами 2 и 1 (генерирующая) создает повышенное давление в верхней полукамере. Газопаровая смесь и частички масла устремляются в сообщающийся с объемом бака полый контакт 8, создавая интенсивное продольное дутье и гася дугу. При отключении больших токов давление в камере к моменту расхождения контактов 1 и 8 достигает 4-5 МПа. После отключения камера заполняется свежим маслом через нижнее отверстие полукамеры 7.

Масляные баковые выключатели на напряжение 35 кВ и выше имеют встроенные трансформаторы тока. На внутреннюю часть проходного изолятора надеты, и укреплены под крышкой выключателя сердечники со вторичными обмотками (один или два на изолятор). Токоведущий стержень проходного изолятора служит первичной обмоткой. Выключатели на напряжение 110 кВ и выше могут иметь емкостные трансформаторы напряжения, для выполнения которых используются обкладки маслонаполненных вводов конденсаторного типа, и трансформаторы напряжения с индуктивной катушкой.

Выключателя маломасляные. В отличие от масляных баковых выключателей масло служит здесь только дугогасящей средой, а изоляция токоведущих частей и дугогасительного устройства относительно земли осуществляется с помощью твердых изоляционных материалов (керамика, текстолит, эпоксидные смолы и т.п.). Диаметры цилиндров у этих выключателей значительно меньше по сравнению с диаметрами баков масляных баковых выключателей, соответственно намного меньше объем и масса заливаемого в цилиндры масла. Меньшая, чем у бакового выключателя, прочность корпуса по отношению к давлениям, создаваемым при отключении предельных токов короткого замыкания, ограничивает отключающую способность маломасляного выключателя.

Рис. 1-2. Дугогасительная камера с промежуточным контактом и продольным дутьем.

1—промежуточный контакт с пружиной; 2— неподвижный контакт с пружиной; 3 — верхняя полукамера, металлическая; 4 — детали соединения с токоподводящим стержнем; 5 — гибкая связь; б — перегородка; 7 — нижняя полукамера, изоляционная; 8 — подвижный контакт.

Маломасляные выключатели имеют существенно меньшие габариты и массу, меньшую взрыво- и пожароопасность и требуют меньших и более дешевых распределительных устройств по сравнению с масляными баковыми выключателями. Наличие в маломасляных выключателях встроенных трансформаторов тока и емкостных трансформаторов напряжения значительно усложняет конструкцию выключателей и увеличивает их габариты, поэтому маломасляные выключатели выполняются без органической связи с такими трансформаторами.

Выключатели по компоновке выполняются с дугогасительными камерами внизу (ход подвижного контакта сверху вниз) и с камерами, расположенными сверху (ход подвижного контакта снизу вверх). Последние более перспективны в отношении повышения отключающей способности. Применяются выключатели для внутренней установки как распределительные и генераторные и для внешней установки как распределительные и подстанционные.

На рис. 1-3 приведен общий вид выключателя типа ВМПЭ-10 на 10 кВ и токи 630, 1000, 1600 А (в зависимости от сечения токопровода и контактов), номинальный ток отключения 20 и 31,5 кА, время отключения выключателя с приводом 0,12 с, время горения дуги при номинальных токах отключения не более, 0,02 с. Выключатель смонтирован на сварной раме 3. Внутри рамы расположен приводной механизм, который передает движение от привода к подвижным контактам и состоит из приводного вала 5 с рычагами, изоляционной тяги 4, отключающих пружин, масляного б и пружинного демпферов. К раме с помощью изоляторов 2 подвешены три полюса 1 выключателя.

Каждый полюс (рис. 1-4) состоит из прочного влагостойкого изоляционного цилиндра 5, армированного на концах металлическими фланцами 3 и 6. На верхнем фланце укреплен корпус 9 из алюминиевого сплава. Внутри корпуса расположены приводной механизм 13 и подвижная контакт-деталь 14 с роликовым токосъемным устройством с роликовым токосъемным устройством 8 и маслоуловителем 12. Корпус закрывается крышкой 10, имеющей отверстие для выхода газов и пробку 11 маслоналивного отверстия.

Рис. 1-3. Выключатель маломасленый на 10 кВ для внутренней установки (тип ВМПЭ-10) – общий вид.

Рис. 1-4. Полюс выключателя, изображенного на рисунке 1-3.

Нижний фланец закрывается крышкой 1, внутри которой расположена неподвижная розеточная контакт-деталь 2, над которой установлена дугогасительная камера 4 поперечного масляного дутья. Снизу крышки помещена маслоспусковая пробка 16, на фланце установлен маслоуказатель 15.

Для повышения стойкости контактов к действию электрической дуги и увеличения срока их службы съемный наконечник подвижной контакт-детали и верхние торцы ламелей розеточного контакта облицованы дугостойкой металлокерамикой. Токоподвод осуществляется к нижней крышке и к верхней крышке или среднему выводу 7. Выключатель может иметь встроенные элементы защиты и управления, такие, как реле максимального тока мгновенного действия и с выдержкой времени, реле минимального напряжения, отключающие электромагниты, вспомогательные контакты и т. п.

Общий вид маломасляного генераторного выключателя приведен на рис. 1-5. Особенностью конструкций этих выключателей является токопровод, имеющий два параллельных контура: основной, контакты которого расположены открыто, и дугогасительный, контакты которого находятся в дугогасительных камерах внутри бака. На рис. 1-6 представлена функциональная электри ческая схема выключателя, изображенного на рис. 1-5. Основной контур образуют токоподвод 11, токоведущая шина 70, основные контакты 9, основная шина траверсы 8 и соответствующие позиции 9, 10 я 11 второго бака. Дугогасительный контур — основная шина 10, медные скобы 12, соединяющие основную шину с баком, стенки бака 3, неподвижный дугогасительный контакт 13, дуга (в момент отключения) 14, подвижный дугогасительный контакт 15 и соответствующие позиции 15, 14, 13, 3. 12, 10 второго бака. При включенном положении выключателя оба контура работают параллельно. Преобладающая часть тока проходит через основной контур, имеющий по сравнению с дугогасительным значительно меньшее сопротивление. При отключении сначала размыкаются основные контакты, дуга на них не возникает, весь ток переходит в дугогасительный контур. Затем размыкаются дугогасительные контакты, отключая цепь. Выключатели выполняются с двукратным разрывом на фазу, с камерами различной конструкции.

Рис. 1-5. Выключатель маломасляный генераторный (тип МГУ-20)

1—основание; 2 — опорный изолятор; 3, 5—бак; 4 — внутриполюсная перегородка; б — междуполюсная перегородка; 7 — газоотвод; 8 — траверса с шинами основного и дугогасительного контуров; 9-основные контакты; 10 — токоведущая шина; 11 — токоподвод

Рис. 1-6. Функциональная электрическая схема выключателя, изображенного на рис. 1-5:

а—включенное положение; б—момент отключения

Рис. 1-7. Выключатель маломасляный колонковый для внешней установки

1 — основание; 2 и 9 — неподвижные контакты; 3 — опорная изоляционная колодка; 4 — роликовый токоподвод; 5 — фарфоровая рубашка; 6 — подвижный контакт; 7 — дугогасительное устройство; 8 — промежуточный контакт; 10 — изоляционный цилиндр

Для увеличения номинального тока применяется искусственный обдув контактной системы и подводящих шин. В последние годы находит применение жидкостное (водяное) охлаждение контактов и шин.

Выключатель маломасляный для внешней установки (распределительный, подстанционный) показан на рис. 1-7. Выключатель состоит из трех основных частей:

Читать еще:  Бра с выключателем хрусталь

гасительных устройств, помещенных в фарфоровые рубашки; фарфоровых опорных колонок и основания (рамы). Изоляционный цилиндр, охватывающий дугогасительное устройство, защищает фарфоровую рубашку от больших давлений, возникающих при отключении. Число разрывов на фазу может быть один, два и больше. Расположение камеры сверху более перспективно для повышения отключающей способности.

Приводы выключателей

Изучение конструкции различных видов приводов выключателей

2. Программа работы

1. Изучить назначение, конструкцию и виды приводов выключателей

2. Изучить принцип работы приводов выключателей

3. Краткие теоретические сведения

Приводы служат для включения и отключения масляных выключателей за счет энергии, поступающей в них от внешнего источника. По виду используемой энергий они могут быть электромагнитными, пневматическими и пружинными. По способу включения и отключения выключателей приводы подразделяют на полуавтоматические, осуществляющие включение выключателя с помощью приложения мускульной силы, а отключение как дистанционно от ключа (устройства релейной защиты), так и вручную, и автоматические, осуществляющие включение и отключение выключателя дистанционно (от релейной защиты), а также отключение вручную.

Основными частями привода являются:

силовое устройство, служащее для преобразования подведенной к приводу энергии в механическую;

операционный и передаточный механизмы, служащие для передачи движения от силового устройства к механизму выключателя и для удержания его во включенном положении;

Электромагнитные приводыпостоянного тока применяются для управления всеми типами масляных выключателей напряжением 110 кВ. Привод представляет собой корпус с электромагнитом включения и операционным механизмом. В корпусе размещены также электромагнит отключения, контакты вспомогательных цепей, механизм ручного отключения и в ряде случаев механический указатель положения выключателя, жестко связанный с его валом.

1 — шток с пружиной; 2 — сердечник; 3 — обмотка электромагнита включения; 4 — удерживающий рычаг; 5 — ролик; 6, 8 — контакторы вспомогательных цепей; 7 — вал привода; 9 — рычаги механизма свободного расцепления; 10 — защелка; 11 — рычаг ручного отключе­ния; 12 — электромагнит отключения; 13 — сборка зажимов; 14 -корпус привода.

Рис.7.1.Привод электромагнитный для маломасляных выключателей

На рис. 7.1 показан привод для маломасляного выключателя. Силовое устройство — электромагнит включения — представляет собой магнитопровод с обмоткой 3 и сердечником 2 со штоком 1. Тяговое усилие необходимое, для включения выключателя, создается сердечником 2, который втягивается электромагнитом при прохождении, по его обмотке тока. Усилие передается выключателю системой рычагов операционного и передаточного механизмов.

После завершения операции включения выключателя цепь электромагнита автоматически разрывается и сердечник под действием силы тяжести (и пружины) опускается вниз.

Для отключения выключателя в обмотку электромагнита отключения подается оперативный ток. Сердечник втягивается электромагнитом, и его боек ударяет в одно из звеньев механизма свободного расцепления 9. Звенья механизма свободного расцепления складываются, вал выключателя поворачивается под действием встроенных отключающих пружин — происходит отключение выключателя.

Остановимся более подробно на некоторых элементах электромагнитного привода, с которыми, часто сталкивается оперативный персонал в своей практической деятельности. К таким элементам относятся запирающий механизм, отключающее устройство и механизм свободного расцепления.

Рис. 7.2.Запирающий механизм.

Запирающий механизм необходим для удержания выключателя во включенном положении. Простейшая конструкция запирающего механизма приведена на рис. 7.2. Удерживающее (запирающее) звено 1 с роликом 2 прижимается защелкой 3 вращающим моментом М. Для расцепления механизма, т.е. для поворота звена 1 в направлении, указанном стрелкой М, надо защелку 3 повернуть против вращения часовой стрелки. Такой поворот выполняется электромагнитом отключения 4 или вручную, воздействием на рычаг отключения.

Для надежной работы запирающего механизма, трущиеся поверхности ролика и защелки подвергаются шлифовке, они должны содержаться в чистоте и регулярно смазываться незамерзающей смазкой.

Отключающее устройство состоит из электромагнита и перемещающегося внутри обмотки ферромагнитного сердечника со штоком. При подаче напряжения наобмотку электромагнита(ключом идеи от реле) его сердечник втягивается и, ударяя по «хвосту» защелки, расцепляет запирающий механизм привода. Основные требования, которые могут быть предъявлены к электромагнитным механизмам отключения, — это быстродействие и постоянство динамических характеристик независимо от колебаний: (в допустимых пределах) напряжения источника питания и температуры окружающей среды. Для этого должно быть обеспечено свободное (без «заеданий») перемещение сердечника электромагнита на всем его пути, отрегулирован запас хода сердечника, проверена надежная работа электромагнитного механизма отключения при отклонениях напряжения от номинального на его выводах.

Механизм свободного расцепления — система складывающихся рычагов в приводе — является связующим звеном между силовым устройством и передаточным механизмом. Он разобщает силовое устройство с передаточным механизмом для последующего отключения выключателя в любой момент времени независимо от того, продолжает или нет действовать сила, осуществляющая включение. Необходимость такого механизма связана с требованием немедленного отключения выключателя действием релейной защиты в случае включения его на устраненное КЗ.

Рис. 7.3.Схема управления выключателем с электромагнитным приводом

На рис. 7.3 показана принципиальная схема дистанционного управления масляным выключателем с электромагнитным приводом. Схема соответствует отключенному положению масляного выключателя.

Включение выключателя осуществляется поворотом рукоятки ключа SAна 45° но часовой стрелке, при этом замыкаются контакты 1—3 в цепи реле команды «включить» КСС. Это реле замыкает контакты КСС.1в цепи питания контактора КМ. Контактор срабатывает и замыкает цепь электромагнита включения УАС- выключатель включается, ключ SA возвращается в нейтральное положение. Aналогично включается выключатель и при действии устройства автоматики, где команда на включение подается реле.

Отключение выключателя осуществляется поворотом ключа на 45° против вращения часовой стрелки, при этом создается цепь питания реле команды «отключить» КСТ. Реле замыкает контакты КСТ.1, в результате чего через замкнутые вспомогательные контакты привода выключателя АкВ.1подается напряжение на электромагнит отключения YAT — выключатель отключается, ключ SA возвращается в нейтральное положение.

Срабатывание устройства релейной защиты также приводит к отключению выключателя, так как контакты выходного, реле защиты включены параллельно контактам реле KCТ.

Заметим, что реальные схемы управления выключателями выглядят более сложными; они содержат цепиблокировок и сигнальные цепи.

Важнейшей блокировкой является блокировки против повторения операций включения и отключения, когда предпринимается попытка включения выключателя после его автоматического отключения М неустранёное КЗ. В этом случае команда на включение поданная ключом, сможет затянуться, а выключатель тем временем отключится релейной защитой. Такое состояние схемы управления приводит к повторному включению выключателя. Блокировка запрещает в данном случае повторные включения.

Схемы управления обычно дополняются устройствами сигнализации в виде сигнальных ламп, показывающих включен или отключен выключатель после снятия соответствующей команды. В схемах предусматривается световая и звуковая сигнализация о несоответствии положения выключателя его ключа управления (например в случае автоматического отключения выключатся; релейной защитой), а также сигнализация контроля цепей включения и отключений выключателя.

В электрических схемах управления и сигнализации выключателей всегда имеются контакты, коммутирующие вспомогательные цепи; электромагнитов включения и отключения, сигнальных ламп и другие цепипостоянного тока. Контакты управляются с помощью кинематических передач между валом привода и валом контактора. Скорость срабатывания контактов определяется технологической необходимостью: есть контактные пары, которые должны быстро размыкаться (или замыкаться) в конце выполнения операции или даже после её завершения; имеются контакты, скорость срабатывания которых зависит от скорости движения перемещающихся частей, и т.д. Конструкции контактов весьма разнообразны, в отечественных приводах исполь­зуются наборные контакты типа КСА (контакты сигнальные Аксентона). В эксплуатации необходимо следить за состоянием контакторов, нарушение в работе которых может привести к отказу в работе привода.

Читать еще:  Выключатель автоматический трехполюсный 250а с pr221ds

Схемы управления и сигнализации применяются на подстанциях в различных вариантах в зависимости от типа выключателя и его привода, использования устройств телемеханики и других условий.

1 — подача сжатого воздуха; 2.. — цилиндр; 3 — поршень; 4 — пружина; 5 — шток Рис. 7.4.Принципиальная схема поршневого пневматического блока одностороннего действия.

Рис. 7.5.Пневматический привод типа ШПВ – 46П для масляного выключателя с большим объемом масла типа У-220

Пневматические приводы применяются для управления масляными выключателями серий У, С и др. Источником энергии для них является сжатый воздух. В качестве силовых элементов используются поршневые пневматические блоки одностороннего действия (рис. 7.4), в которых сжатый воздух при работе Привода подается с одной стороны поршня 5, а обратный ход поршня осуществляется действием пружины 4. , Кинематическая схема пневматического привода подобна схе­ме электромагнитного привода.

На рис. 7.5 показан пневматический привод типа ШПВ-46П для масляного выключателя У-220,.созданный на базе электромагнитного привода. В нем вместо Электромагнита включения установлен пневматический блок, который состоит из рабочего цилиндра 4, дутьевого клапана 5, патрубка 6, соединяющего дутьевой клапан с; воздухосборником сжатого воздуха 1, устройства, ручного отключений 3, электроподогревателя 7, включаемого при низких температурах наружного воздуха. К воздухосборнику присоединен контактный манометр 2, контролирующий давление сжатого воздуха. Привод рассчитан на номинальное давление сжатого воздуха 2 МПа. Объем воздуха в воздухосборнике достаточен для осуществления цикла АПВ.

Привод крепится на баке выключателя и соединяется тягой с механизмом полюса выключателя. Каждый полюс имеет самостоятельную схему управлений, обеспечивающую дистанционное трехполосное и пофазное управление выключателем.

Пружинные приводы предназначаются для маломасляных выключателей 6-10 кВ. Источником энергии в приводах служат мощные предварительно заведенные рабочие пружины. Завод пружины обычно осуществляется с помощью электродвигателя, соединен­ного с редуктором, но возможен и ручной завод съемным рычагом. Время завода пружин для разных типов приводов составляет от нескольких секунд до десятков секунд.

Операция включения выключателя, выполняемая за счет потенциальной энергии рабочих пружин, может происходить лишь после их полного завода, что контролируется специальной блокировкой и сигнализируется указателем готовности привода к работе. В пружинных приводах ППМ-10, ПП-67 рабочие пружины должны заводиться перед каждой операцией включения. Завод рабочих пружин возможен как при отключенном, так и при включенном выключателе — в последнем случае для осуществления электрического АПВ.

4. Порядок выполнения работы

1. Рассмотреть принцип действия приводов выключателей

2. Определить различия между видами приводов

Выводы

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Для чего служат приводы выключателей.

2. Основные части приводы выключателя.

3. Электромагнитные приводы.

4. Запирающий механизм в приводе.

5. Отключающее устройство привода.

6. Механизм расцепления.

7. Пневматические приводы.

8. Пружинные приводы.

9. Классификация приводов

10. Основные требования, предъявляемые к электромагнитным механизмам отключения

Лабораторная работа №8

Выключатели масленые.

Масляный выключатель

Коммутационное устройство, предназначенное для включения и отключения силовых высоковольтных цепей и электрооборудования

Масляный выключатель — это коммутационное устройство, предназначенное для включения и отключения силовых высоковольтных цепей и электрооборудования как под нагрузкой, так и без нее.

Этот процесс разрыва электрической цепи выполняется выключателем за счет размыкания силовых контактов, погруженных в трансформаторное масло — из-за этого происходит гашение электрической дуги между ними.

То есть масло служит дугогасительной средой и справляется со своей задачей весьма эффективно.

Устанавливаются они почти всегда в ячейках КРУ (комплектное распределительное устройство) или КСО (камера сборная односторонняя), а также в ОРУ (открытых распределительных устройствах).

После размыкания контактов выключателя масло служит для гашения дуги и как изолирующий материал между высоковольтными контактами.

Только выключатели маломасляные устроены таким образом, что масло в них служит исключительно для дугогашения и лишь частично для изоляции.

Во время процесса отключения в масле, при возникновении дуги в области контакта достигается очень высокая температура, порядка 6 тыс. градусов.

Однако, за счет свойств масла и химической реакции с парами, возникающими во время этого процесса, выделение теплоты при горении дуги не наносит вреда этому электрическому коммутационному устройству.

Все масляные выключатели конструктивно состоят из:

силовой контактной группы — в неё входит подвижный (свеча) и неподвижный контакт (розетка), между которым и возникает дуга, гасящаяся в масле;

изоляторы, которые обеспечивают надёжную изоляцию токопроводящих частей от корпуса, и друг от друга;

1 го или 3 х баков с трансформаторным маслом;

группы блок-контактов, выполняющих контролирующую и управляющую роль;

приводы к масляным выключателям, собраны на довольно мощной включающей катушке, называющейся соленоидом или катушкой соленоида;

отключающая катушка выполняет роль ударного механизма, сбивающего с защёлки включенное устройство выключателя. Также привод может быть ручной;

специальные отключающие пружины, которые размыкают силовую часть при отключении. За счёт них зависит скорость расхождения контактов.

При подаче питания на катушку соленоида включения его массивный сердечник втягивается, тем самым приводя в движение рычажный механизм, который, в свою очередь, направляет подвижные контакты, то есть свечи, в направлении розеток.

Также механизм включения может быть выполнен и на ручном приводе, тогда работу соленоида должен будет выполнять человек с помощью специального рычага, разумеется, в диэлектрических перчатках.

После тока как свечи вошли в розетку на 20-25 мм, механизм масляного выключателя встает на защелку.

Во время работы, в ячейках где установлены высоковольтные выключатели, должны быть изготовлены блокирующие устройства, которые не позволят механически, включенный высоковольтный аппарат выкатить из ячейки КРУ.

Масляные выключатели, установленные в ячейках должны быть оснащены системами защиты.

Таким образом, он работает в автоматическом режиме.

Его работа и назначение схожи с обычным низковольтным автоматическим выключателем.

При подаче отключающего сигнала или нажатия на механическую кнопку происходит сбивание устройства с защелки и за счет пружин, электрическая цепь разрывается, и он переходит в отключенное состояние.

Отключающие сигналы, которые управляют выключателем, приходят от релейной защиты и автоматики.

Конструкция масляных выключателей выполняется 2 х основных типов:

баковые — обладают большим объемом масла, оснащены одним большим баком сразу для 3 х контактов трехфазного напряжения;

горшковые (маломасляные) — с меньшим объемом масла, но и с дополнительной системой дугогашения, и 3 мя раздельными баками. В них на каждой фазе присутствует отдельный металлический цилиндр, заполненный маслом, в каком и происходит разрыв контактов и подавление электрической дуги.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector